1、7.8 7.8 有理数域上不可约多项式有理数域上不可约多项式第七章第七章 多项式环多项式环1/15 本节讨论有理数域上多项式可约性,以及怎样求Q上多项式有理根,因为与 在 上可约性相同。所以讨论在Q上可约性可转化为求整系数多项式在Q上可约性。一、整系数多项式可约性定义1(本原多项式):若整系数多项式系数互素,则称是一个本原多项式。比如:本原多项式加、减运算所得未必是本原多项式,但相乘之后必是本原多项式。是本原多项式。2/15引理(高斯定理):两个本原多项式乘积仍是本原多项式。证:设都是本原多项式若 不是本原多项式,则存在素数p,使因为都是本原多项式,故系数不能都被p整除,系数 也不能被p整除,
2、3/15可设但 但 现考虑除了这一项外,p能整除其余各项,所以这是一个矛盾,故 是本原多项式。定理 1:一个整系数n(n0)次多项式在有理数域上可约充要条件是它在整数环上可约。4/15证:充分性显然。下证必要性。设可分解成中两个次数都小于n多项式与 乘积,即有设 系数公分母为m,则一个整系数多项式,把是系数公因式n提出来,是本原多项式,即 同理,存在有理数S,使也是本原多项式,5/15于是下证是一个整数,设(p,q互素且p0),因为是整系数多项式,故p能整除q与每一系数乘积,而p,q互素,故p能整除每一系数,但由引理1知,是本原多项式,故p=1,从而rs是一个整数。6/15 C上不可约多项式只
3、能是一次,R上不可约多项式只能是一次和含非实共轭复根二次多项式,Q上不可约多项式特征是什么?下面Eisenstein判别法回答了这个问题。问题定理 2(Eisenstein判别法):设是整系数多项式,若存在素数p,使 则 在Q上不可约。7/15证(反证法):若在Q上可约在Z上可约,即存在:使 其中故 或 但二者不能同时成立。8/15不妨设但 。因为 ,由 知 系数不能都被p即但 现考虑但p能整除其它项,故与已知矛盾。假设是第一个不能被p整除系数,整除,在 中不可约在 中不可约。9/15 由Eisenstein判别法知,Q上存在任意次不可约多项式。例1 是Q上不可约多项式,p是素数。例2 判断在
4、Q上是否可约?解:分别取p=2,p=3即知。解:取素数p即知。10/15Eisenstein是判别多项式在Q上不可约充分条件,但不是必要条件。注意:例:不可约,但找不到素数p。系数多项式。尤其地,若是本原,则也是本原。推论:设若 都是整系数多项式,且是本原,则必是整全部系数。)(若不是11/15二、整系数多项式有理根定理 3:设是一个整系数多项式,若有理数是整系数多项式一个根,这里u,v是互素整数,则证:(1)是 根,有一次因式12/15即 因为是本原多项式是整系数多项式,故是整系数多项式。(2)设是整数。比较两边n次项与常数项系数得:13/15 由定理 3,要求整系数多项式有理根,只要求出最高次项系数因数以及常数项因数。然后对形如有理数用综合除法来检验,假如最高次系数为1,则整系数多项式f有理根只能是整根。这么例 3 求有理根。解:2因数是因数是故 可能有理根只能是对 用综合除法逐一检验知:有理根只能是 。14/15定理 4:设是互素整数,且是整系数多项式根,则证:由把 代入得:15/15