ImageVerifierCode 换一换
格式:PPT , 页数:67 ,大小:1.21MB ,
资源ID:24172371      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenkunet.com/d-24172371.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(模糊数学省名师优质课赛课获奖课件市赛课一等奖课件.ppt)为本站会员(知识海洋)主动上传,文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文库网(发送邮件至13560552955@163.com或直接QQ联系客服),我们立即给予删除!

模糊数学省名师优质课赛课获奖课件市赛课一等奖课件.ppt

1、概率与统计概率与统计 开课系:理学院开课系:理学院 统计与金融数学系统计与金融数学系课程主页课程主页:http:/教师教师:陈萍陈萍e-mail:Probstat 1/672/67概率论是研究什么?随机现象:不确定性与统计规律性随机现象:不确定性与统计规律性随机现象:不确定性与统计规律性随机现象:不确定性与统计规律性概率论概率论研究和揭示随机现象研究和揭示随机现象统计规律性科学统计规律性科学 3/67第一章第一章 随机事件及其概率随机事件及其概率随机事件及其运算随机事件及其运算概率定义及其运算概率定义及其运算条件概率条件概率事件独立性事件独立性 4/671.1随机事件及其概率随机事件及其概率一

2、、随机试验一、随机试验(简称简称“试验试验”)随机试验特点(p2)1.可在相同条件下重复进行;2.试验可能结果不止一个,但能确定全部可能结果;3.一次试验之前无法确定详细是哪种结果出现。随机试验可表为E 5/67E1:抛一枚硬币,分别用“H”和“T”表示出正面和反面;E2:将一枚硬币连抛三次,考虑正反面出现情况;E3:将一枚硬币连抛三次,考虑正面出现次数;E4:掷一颗骰子,考虑可能出现点数;E5:统计某网站一分钟内受到点击次数;E6:在一批灯泡中任取一只,测其寿命;E7:任选一人,统计他身高和体重。随机试验例6/67二、样本空间二、样本空间(p2)1、样本空间:试验全部可能结果所组成集合称为样

3、本空间,记为S=e;2、样本点:试验每一个结果或样本空间元素称为一个样本点,记为e.3.由一个样本点组成单点集由一个样本点组成单点集称为一个基本事件,也记为e.7/67随机事件随机事件 1.定义定义(p3定义1.1.2)试验中可能出现或可能不出现情况叫“随机事件”,简称“事件”.记作A、B、C等任何事件均可表示为样本空间某个子集任何事件均可表示为样本空间某个子集.称事件事件A发生生当且仅当试验结果是子集A中元素 2.两个特殊事件两个特殊事件:必定事件S、不可能事件.(p3)比如比如 对于试验E2,以下A、B、C即为三个随机事件:A“最少出一个正面”HHH,HHT,HTH,THH,HTT,THT

4、,TTH;B=“两次出现同一面”=HHH,TTTC=“恰好出现一次正面”=HTT,THT,TTH 再如,试验E6中D“灯泡寿命超出1000小时”x:1000 xP(A)?P(A|B)P(A)?何时何时P(A|B)P(A)?P(A|B)0,则 P(AB)P(A)P(B|A).(1.4.2)式(1.4.2)就称为事件A、B概率乘法公式乘法公式。式(1.4.2)还可推广到三个事件情形:P(ABC)P(A)P(B|A)P(C|AB).(1.4.3)普通地,有以下公式:P(A1A2An)P(A1)P(A2|A1).P(An|A1An1).(1.4.4)51/67例例3 3 合中有合中有3 3个红球,个红

5、球,2 2个白球,每次从袋中任个白球,每次从袋中任取一只,观察其颜色后放回,并再放取一只,观察其颜色后放回,并再放入一只与所取之球颜色相同球,若从合中连续取入一只与所取之球颜色相同球,若从合中连续取球球4 4次次,试求第试求第1 1、2 2次取得白球、次取得白球、第第3 3、4 4次取得红球概率。次取得红球概率。52/67三、全概率公式与贝叶斯公式三、全概率公式与贝叶斯公式例4.(p16)市场上有甲、乙、丙三家工厂生产同一品牌产品,已知三家工厂市场拥有率分别为1/4、1/4、1/2,且三家工厂次品率分别为 2、1、3,试求市场上该品牌产品次品率。B53/67定义定义 (p17)事件组A1,A2

6、,An(n可为),称为样本空间S一个划分,若满足:A1A2AnB54/67定理定理1、(p17)设设A1,,An是是S一个划一个划分,且分,且P(Ai)0,(i1,n),则对任何事件则对任何事件B S有有 式式(1.4.5)就称为就称为全概率公式全概率公式。55/67例例5(P17)有有甲甲乙乙两两个个袋袋子子,甲甲袋袋中中有有两两个个白白球球,1个个红红球球,乙乙袋袋中中有有两两个个红红球球,一一个个白白球球这这六六个个球球手手感感上上不不可可区区分分今今从从甲甲袋袋中中任任取取一一球球放放入入乙乙袋袋,搅搅匀匀后后再再从从乙乙袋袋中中任任取取一球,问此球是红球概率?一球,问此球是红球概率?

7、甲乙56/67定理定理2 2(p18)设A1,,An是S一个划分,且P(Ai)0,(i1,n),则对任何事件BS,有 57/6758/67例6(p18)数字通讯过程中,信源发射0、1两种状态信号,其中发0概率为0.55,发1概率为0.45。因为信道中存在干扰,在发0时候,接收端分别以概率0.9、0.05和0.05接收为0、1和“不清”。在发1时候,接收端分别以概率0.85、0.05和0.1接收为1、0和“不清”。现接收端接收到一个“1”信号。问发端发是0概率是多少?)BA (P)A(P)AB(P)A(P)AB(P)A(P)AB(P+0.06759/67条件概率 条件概率条件概率 小小 结结缩减

8、样本空间 定义式 乘法公式 全概率公式 贝叶斯公式60/671.5 事件独立性事件独立性一、两事件独立一、两事件独立(P19)定义定义1 设A、B是两事件,P(A)0,若 P(B)P(B|A)(1.5.1)则称事件A与B相互独立。式(1.5.1)等价于:P(AB)P(A)P(B)(1.5.2)61/67定理、定理、以下四件事等价:(1)事件A、B相互独立;(2)事件A、B相互独立;(3)事件A、B相互独立;(4)事件A、B相互独立。62/67二、多个事件独立二、多个事件独立定义定义2、(p20)若三个事件A、B、C满足:(1)P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),则称事件A、B、C两两相互独立两两相互独立;63/67普通地,设A1,A2,An是n个事件个事件,假如对任意k (1kn),任意1i1i2 ik n,含有等式 P(A i1 A i2 A ik)P(A i1)P(A i2)P(A ik)(1.5.4)则称n个事件个事件A1,A2,An相互独立相互独立。64/67三、事件独立性应用三、事件独立性应用1、加法公式简化加法公式简化:若事件A1,A2,An相互独立,则 (1.5.5)65/6766/6767/67

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报