ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:269.04KB ,
资源ID:24177680      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenkunet.com/d-24177680.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(离散数学屈婉玲版ch1名师优质课获奖市赛课一等奖课件.ppt)为本站会员(知识海洋)主动上传,文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文库网(发送邮件至13560552955@163.com或直接QQ联系客服),我们立即给予删除!

离散数学屈婉玲版ch1名师优质课获奖市赛课一等奖课件.ppt

1、第1页1主要内容主要内容命题逻辑基本概念命题逻辑基本概念命题逻辑等值演算命题逻辑等值演算命题逻辑推理理论命题逻辑推理理论一阶逻辑基本概念一阶逻辑基本概念一阶逻辑等值演算与推理一阶逻辑等值演算与推理第一部分第一部分 数理逻辑数理逻辑第2页2第一章第一章 命题逻辑基本概念命题逻辑基本概念主要内容主要内容命题与联结词命题与联结词 命题及其分类命题及其分类 联结词与复合命题联结词与复合命题命题公式及其赋值命题公式及其赋值第3页3命题与真值命题与真值 命题:判断结果惟一陈说句命题:判断结果惟一陈说句 命题真值:判断结果命题真值:判断结果 真值取值:真与假真值取值:真与假 真命题与假命题真命题与假命题注意

2、:注意:感叹句、祈使句、疑问句都不是命题感叹句、祈使句、疑问句都不是命题陈说句中悖论,判断结果不惟一确定不是命题陈说句中悖论,判断结果不惟一确定不是命题 1.1 命题与联结词命题与联结词第4页4例例1 1 以下句子中那些是命题?以下句子中那些是命题?(1)是有理数是有理数.(2)2+5=7.(3)x+5 3.(4)你去教室吗?你去教室吗?(5)这个苹果真大呀!这个苹果真大呀!(6)请不要讲话!请不要讲话!(7)2050年元旦下大雪年元旦下大雪.假命题假命题命题概念命题概念 真命题真命题不是命题不是命题 不是命题不是命题 不是命题不是命题不是命题不是命题命题,但真值现在不知道命题,但真值现在不知

3、道第5页5命题分类:简单命题(也称原子命题)与复合命题命题分类:简单命题(也称原子命题)与复合命题简单命题符号化简单命题符号化用小写英文字母用小写英文字母 p,q,r,pi,qi,ri(i 1)表示简单命表示简单命题题用用“1”表示真,用表示真,用“0”表示假表示假 比如,令比如,令 p:是有理数,则是有理数,则 p 真值为真值为0,q:2+5=7,则,则 q 真值为真值为1 命题分类命题分类第6页6否定、合取、析取联结词否定、合取、析取联结词定义定义1.3 设设p,q为两个命题,复合命题为两个命题,复合命题“p或或q”称作称作p与与q析析取式取式,记作,记作pq,称作称作析取联结词析取联结词

4、.要求要求pq为假当为假当且仅当且仅当p与与q同时为假同时为假.定义定义1.1 设设 p为命题,复合命题为命题,复合命题“非非p”(或或“p否定否定”)称为称为p否定式否定式,记作,记作 p,符号,符号 称作称作否定联结词否定联结词.要求要求 p 为真为真当且仅当当且仅当p为假为假.定义定义1.2 设设p,q为两个命题,复合命题为两个命题,复合命题“p而且而且q”(或或“p与与 q”)称为称为p与与q合取式合取式,记作,记作pq,称作称作合取联结词合取联结词.要要求求pq为真当且仅当为真当且仅当p与与q同时为真同时为真.第7页7例例2 将以下命题符号化将以下命题符号化.(1)吴颖既用功又聪明吴

5、颖既用功又聪明.(2)吴颖不但用功而且聪明吴颖不但用功而且聪明.(3)吴颖即使聪明,但不用功吴颖即使聪明,但不用功.(4)张辉与王丽都是三好生张辉与王丽都是三好生.(5)张辉与张辉与王丽是同学王丽是同学.合取联结词实例合取联结词实例第8页8解解 令令p:吴颖用功吴颖用功,q:吴颖聪明吴颖聪明(1)p q(2)p q(3)p q(4)设设p:张辉是三好生张辉是三好生,q:王丽是三好生王丽是三好生 p q(5)p:张辉与张辉与王丽是同学王丽是同学(1)(3)说明描述合取式灵活性与多样性说明描述合取式灵活性与多样性(4)(5)要求分清要求分清“与与”所联结成份所联结成份合取联结词实例合取联结词实例第

6、9页9例例3 将以下命题符号化将以下命题符号化(1)2 或或 4 是素数是素数.(2)2 或或 3 是素数是素数.(3)4 或或 6 是素数是素数.(4)小元元只能拿一个苹果或一个梨小元元只能拿一个苹果或一个梨.(5)王小红生于王小红生于 1975 年或年或 1976 年年.析取联结词实例析取联结词实例第10页10解解 (1)令令p:2是素数是素数,q:4是素数是素数,p q(2)令令p:2是素数是素数,q:3是素数是素数,p q(3)令令p:4是素数是素数,q:6是素数是素数,p q(4)令令p:小元元拿一个苹果小元元拿一个苹果,q:小元元拿一个梨小元元拿一个梨 (pq)(p q)(5)p:

7、王小红生于王小红生于 1975 年年,q:王小红生于王小红生于1976 年年,(pq)(p q)或或 p q(1)(3)为相容或为相容或(4)(5)为排斥或为排斥或,符号化时符号化时(5)可有两种形式,而可有两种形式,而(4)则不则不能能析取联结词实例析取联结词实例第11页11定义定义1.4 设设p,q为两个命题,复合命题为两个命题,复合命题“假如假如p,则则q”称作称作p与与q蕴蕴涵式涵式,记作,记作pq,并称,并称p是蕴涵式是蕴涵式前件前件,q为蕴涵式为蕴涵式后后件件,称称作作蕴涵联结词蕴涵联结词.要求:要求:pq为假当且仅当为假当且仅当p为真为真q为假为假.蕴涵联结词蕴涵联结词(1)pq

8、 逻辑关系:逻辑关系:q为为 p 必要条件必要条件(2)“假如假如 p,则则 q”有很多不一样表述方法:有很多不一样表述方法:若若p,就,就q 只要只要p,就,就q p仅当仅当q 只有只有q 才才p 除非除非q,才才p 或或 除非除非q,不然非,不然非p,(3)当当 p 为假时,为假时,pq恒为真,称为空证实恒为真,称为空证实(4)常出现错误:不分充分与必要条件常出现错误:不分充分与必要条件第12页12例例4 设设 p:天冷,:天冷,q:小王穿羽绒服,将以下命题符号化:小王穿羽绒服,将以下命题符号化(1)只要天冷,小王就穿羽绒服只要天冷,小王就穿羽绒服.(2)因为天冷,所以小王穿羽绒服因为天冷

9、,所以小王穿羽绒服.(3)若小王不穿羽绒服,则天不冷若小王不穿羽绒服,则天不冷.(4)只有天冷,小王才穿羽绒服只有天冷,小王才穿羽绒服.(5)除非天冷,小王才穿羽绒服除非天冷,小王才穿羽绒服.(6)除非小王穿羽绒服,不然天不冷除非小王穿羽绒服,不然天不冷.(7)假如天不冷,则小王不穿羽绒服假如天不冷,则小王不穿羽绒服.(8)小王穿羽绒服仅当日冷时候小王穿羽绒服仅当日冷时候.蕴涵联结词实例蕴涵联结词实例pq注意:注意:pq 与与 qp 等值(真值相同)等值(真值相同)pqpqqpqppqqpqp第13页13定义定义1.5 设设 p,q为两个命题,复合命题为两个命题,复合命题“p当且仅当当且仅当q

10、”称作称作p与与q等价式等价式,记作,记作pq,称作称作等价联结词等价联结词.要求要求pq为真当且为真当且仅当仅当p与与q同时为真或同时为假同时为真或同时为假.pq 逻辑关系:逻辑关系:p与与q互为充分必要条件互为充分必要条件等价联结词等价联结词例例5 5 求以下复合命题真值求以下复合命题真值(1)2+2 4 当且仅当当且仅当 3+3 6.(2)2+2 4 当且仅当当且仅当 3 是偶数是偶数.(3)2+2 4 当且仅当当且仅当 太阳从东方升起太阳从东方升起.(4)2+2 4 当且仅当当且仅当 美国位于非洲美国位于非洲.(5)函数函数 f(x)在在 x0 可导充要条件是可导充要条件是 它在它在

11、x0 连续连续.10010第14页14本小节中本小节中p,q,r,均表示命题均表示命题.联结词集为联结词集为,,p,p q,p q,pq,pq为基本复合命题为基本复合命题.其中要尤其注意了解其中要尤其注意了解pq涵义涵义.重复使重复使用用,中联结词组成更为复杂复合命题中联结词组成更为复杂复合命题.设设 p:是无理数,是无理数,q:3是奇数,是奇数,r:苹果是方,苹果是方,s:太阳绕地球转太阳绕地球转 则复合命题则复合命题(pq)(rs)p)是假命题是假命题.小结小结联结词运算次序:联结词运算次序:,同级按先出现者先运算同级按先出现者先运算.第15页151.2 命题公式及其赋值命题公式及其赋值命

12、题变项与合式公式命题变项与合式公式命题变项命题变项合式公式合式公式合式公式层次合式公式层次公式赋值公式赋值公式赋值公式赋值公式类型公式类型真值表真值表第16页16命题变项与合式公式命题变项与合式公式 命题常项命题常项 命题变项(命题变元)命题变项(命题变元)常项与变项均用常项与变项均用 p,q,r,pi,qi,ri,等表示等表示.定义定义1.6 合式公式合式公式(简称公式)递归定义:(简称公式)递归定义:(1)单个命题变项和命题常项是合式公式单个命题变项和命题常项是合式公式,称作称作原子命题公式原子命题公式 (2)若若A是合式公式,则是合式公式,则(A)也是也是 (3)若若A,B是合式公式,则

13、是合式公式,则(A B),(A B),(AB),(AB)也是也是 (4)只有有限次地应用只有有限次地应用(1)(3)形成符号串才是合式公式形成符号串才是合式公式几点说明:几点说明:归纳或递归定义归纳或递归定义,元语言与对象语言元语言与对象语言,外层括号能够省去外层括号能够省去第17页17合式公式层次合式公式层次定义定义1.7(1)若公式若公式A是单个命题变项,则称是单个命题变项,则称A为为0层公式层公式.(2)称称 A 是是 n+1(n0)层公式是指下面情况之一:层公式是指下面情况之一:(a)A=B,B 是是 n 层公式;层公式;(b)A=B C,其中其中B,C 分别为分别为 i 层和层和 j

14、 层公式,层公式,且且 n=max(i,j);(c)A=B C,其中其中 B,C 层次及层次及 n 同同(b);(d)A=BC,其中其中B,C 层次及层次及 n 同同(b);(e)A=BC,其中其中B,C 层次及层次及 n 同同(b).(3)若公式若公式A层次为层次为k,则称则称A为为k层公式层公式.比如比如 公式公式 A=p,B=p,C=pq,D=(pq)r,E=(p q)r)(r s)分别为分别为0层,层,1层,层,2层,层,3层,层,4层公式层公式.第18页18定义定义1.8 设设p1,p2,pn是出现在公式是出现在公式A中全部命题变项中全部命题变项,给给p1,p2,pn各指定一个真值各

15、指定一个真值,称为对称为对A一个一个赋值赋值或或解释解释.若使若使A为为1,则称这组值为则称这组值为A成真赋值成真赋值;若使若使A为为0,则称这组则称这组值为值为A成假赋值成假赋值.几点说明:几点说明:A中仅出现中仅出现 p1,p2,pn,给,给A赋值赋值=1 2 n是指是指 p1=1,p2=2,pn=n,i=0或或1,i之间不加标点符之间不加标点符号号 A中仅出现中仅出现 p,q,r,给给A赋值赋值 1 2 3是指是指 p=1,q=2,r=3 含含n个命题变项公式有个命题变项公式有2n个赋值个赋值.如如 000,010,101,110是是(pq)r成真赋值成真赋值 001,011,100,1

16、11是成假赋值是成假赋值.公式赋值公式赋值第19页19定义定义1.9 将命题公式将命题公式A在全部赋值下取值情况列成表在全部赋值下取值情况列成表,称作称作A真值表真值表.结构真值表步骤结构真值表步骤:(1)找出公式中所含全部命题变项找出公式中所含全部命题变项p1,p2,pn(若无下角标若无下角标 则按字母次序排列则按字母次序排列),列出列出2n个全部赋值个全部赋值,从从000开始开始,按按 二进制加法二进制加法,每次加每次加1,直至直至111为止为止.(2)按从低到高次序写出公式各个层次按从低到高次序写出公式各个层次.(3)对每个赋值依次计算各层次真值对每个赋值依次计算各层次真值,直到最终计算

17、出公式直到最终计算出公式 真值为止真值为止.真值表真值表第20页20例例6 写出以下公式真值表写出以下公式真值表,并求它们成真赋值和成假并求它们成真赋值和成假 赋值赋值:(1)(p q)r (2)(qp)qp (3)(p q)q真值表真值表第21页21(1)A=(p q)r成真成真赋值:000,001,010,100,110;成假成假赋值:011,101,111 p q rp q r(p q)r0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 00111111 10101010 11101010 真值表真值表1第22页22(2)B(qp)qp成真赋成真赋值值:0

18、0,01,10,11;无成假赋值无成假赋值p q qp(qp)q(qp)qp0 00 11 01 1101100011111真值表真值表2第23页23(3)C (p q)q真值表真值表成假赋值成假赋值:00,01,10,11;无成真赋值无成真赋值p q p p q (p q)(p q)q0 00 11 01 11100110100100000真值表真值表3第24页24公式类型公式类型定义定义1.10 (1)若若A在它任何赋值下均为真在它任何赋值下均为真,则称则称A为为重言式重言式或或永真式永真式;(2)若若A在它任何赋值下均为假在它任何赋值下均为假,则称则称A为为矛盾式矛盾式或或永假式永假式;

19、(3)若若A不是矛盾式不是矛盾式,则称则称A是是可满足式可满足式.由例由例1可知可知,(p q)r,(qp)qp,(p q)q 分别为非重言式可满足式分别为非重言式可满足式,重言式重言式,矛盾式矛盾式.注意:重言式是可满足式,但反之不真注意:重言式是可满足式,但反之不真.真值表用途真值表用途:求出公式全部成真赋值与成假赋值求出公式全部成真赋值与成假赋值,判断公式类型判断公式类型第25页25第一章第一章 习题课习题课主要内容主要内容命题、真值、简单命题与复合命题、命题符号化命题、真值、简单命题与复合命题、命题符号化联结词联结词,及复合命题符号化及复合命题符号化命题公式及层次命题公式及层次公式类型

20、公式类型真值表及应用真值表及应用基本要求基本要求深刻了解各联结词逻辑关系深刻了解各联结词逻辑关系,熟练地将命题符号化熟练地将命题符号化会求复合命题真值会求复合命题真值深刻了解合式公式及重言式、矛盾式、可满足式等概念深刻了解合式公式及重言式、矛盾式、可满足式等概念熟练地求公式真值表,并用它求公式成真赋值与成假赋值熟练地求公式真值表,并用它求公式成真赋值与成假赋值及判断公式类型及判断公式类型第26页261.将以下命题符号化将以下命题符号化 (1)豆沙包是由面粉和红小豆做成豆沙包是由面粉和红小豆做成.(2)苹果树和梨树都是落叶乔木苹果树和梨树都是落叶乔木.(3)王小红或李大明是物理组组员王小红或李大

21、明是物理组组员.(4)王小红或李大明中一人是物理组组员王小红或李大明中一人是物理组组员.(5)因为交通阻塞,他迟到了因为交通阻塞,他迟到了.(6)假如交通不阻塞,他就不会迟到假如交通不阻塞,他就不会迟到.(7)他没迟到,所以交通没阻塞他没迟到,所以交通没阻塞.(8)除非交通阻塞,不然他不会迟到除非交通阻塞,不然他不会迟到.(9)他迟到当且仅当交通阻塞他迟到当且仅当交通阻塞.练习练习1第27页27提醒:提醒:分清复合命题与简单命题分清复合命题与简单命题分清相容或与排斥或分清相容或与排斥或分清必要与充分条件及充分必要条件分清必要与充分条件及充分必要条件答案答案:(1)是简单命题是简单命题 (2)是

22、合取式是合取式 (3)是析取式(相容或)是析取式(相容或)(4)是析取式(排斥或)是析取式(排斥或)设设 p:交通阻塞,交通阻塞,q:他迟到他迟到 (5)pq,(6)pq或或qp (7)qp 或或pq,(8)qp或或 pq (9)pq 或或 pq可见可见(5)与与(7),(6)与与(8)相同(等值)相同(等值)练习练习1解答解答第28页282.设设 p:2是素数是素数 q:北京比天津人口多北京比天津人口多 r:美国首都是旧金山美国首都是旧金山 求下面命题真值求下面命题真值 (1)(p q)r (2)(q r)(pr)(3)(qr)(pr)(4)(qp)(pr)(rq)0练习练习2100第29页

23、293.用真值表判断下面公式类型用真值表判断下面公式类型 (1)p r(qp)(2)(pq)(qp)r (3)(pq)(pr)练习练习3第30页30练习练习3解答解答(1)p r(qp)矛盾式矛盾式p q rqp (qp)p r(qp)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 11001111 00110000 00000000 第31页31练习练习3解答解答(2)(pq)(qp)r 永真式永真式11111111 11110011 11110011 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1(pq)(qp)r qp pq p q r第32页32练习练习3解答解答(3)(pq)(pr)非永真式可非永真式可满足式足式p q rpq pr (pq)(pr)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 11110011 11110101 11111001 第33页33

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报