ImageVerifierCode 换一换
格式:PDF , 页数:303 ,大小:4.47MB ,
资源ID:33856    下载:注册后免费下载
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenkunet.com/d-33856.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中外物理学精品书系·引进系列49【英文原版替代】-广义相对论的3+1形式:数值相对论基础(影印版)-[法]E·古尔古隆-Springer出版-2012.pdf)为本站会员(李静文)主动上传,文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文库网(发送邮件至13560552955@163.com或直接QQ联系客服),我们立即给予删除!

中外物理学精品书系·引进系列49【英文原版替代】-广义相对论的3+1形式:数值相对论基础(影印版)-[法]E·古尔古隆-Springer出版-2012.pdf

1、Lecture Notes in Physics Volume 846 Founding Editors W. Beiglbck J. Ehlers K. Hepp H. Weidenmller Editorial Board B.-G. Englert, Singapore U. Frisch, Nice, France F. Guinea, Madrid, Spain P. Hnggi, Augsburg, Germany W. Hillebrandt, Garching, Germany M. Hjorth-Jensen, Oslo, Norway R. A. L. Jones, She

2、feld, UK H. von Lhneysen, Karlsruhe, Germany M. S. Longair, Cambridge, UK M. Mangano, Geneva, Switzerland J.-F. Pinton, Lyon, France J.-M. Raimond, Paris, France A. Rubio, Donostia-San Sebastin, Spain M. Salmhofer, Heidelberg, Germany D. Sornette, Zurich, Switzerland S. Theisen, Potsdam, Germany D.

3、Vollhardt, Augsburg, Germany W. Weise, Garching, Germany For further volumes: http:/ Lecture Notes in Physics The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teachingquickly and informally, but with a high quality and the explicit aim to s

4、ummarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research and to serve three purposes: to be a compact and modern up-to-date source of reference on a well-dened

5、topic to serve as an accessible introduction to the eld to postgraduate students and nonspecialist researchers from related areas to be a source of advanced teaching material for specialized seminars, courses and schools Both monographs and multi-author volumes will be considered for publication. Ed

6、ited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at . The series content is indexed, abstracted a

7、nd referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia. Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer: Christian Caron Springer Heidelberg Physics Editori

8、al Department I Tiergartenstrasse 17 69121 Heidelberg/Germany ric Gourgoulhon 3+1 Formalism in General Relativity Bases of Numerical Relativity 123ric Gourgoulhon Lab. Univers et Thories (LUTH) UMR 8102 du CNRS Observatoire de Paris Universit Paris Diderot place Jules Janssen 5 92190 Meudon France I

9、SSN 0075-8450 e-ISSN 1616-6361 ISBN 978-3-642-24524-4 e-ISBN 978-3-642-24525-1 DOI 10.1007/978-3-642-24525-1 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2011942212Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved,

10、whether the whole or part of the material is concerned, specically the rights of translation, reprinting, reuse of illustrations, recitation, broadcast- ing, reproduction on microlm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only und

11、er the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in t

12、his publication does not imply, even in the absence of a specic statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer Science+Business Media ()To the memory of Jean-Alain Mar

13、ck (1955-2000)Preface This monograph originates from lectures given at the General Relativity Trimester at the Institut Henri Poincar in Paris 1; at the VII Mexican School on Gravi- tation and Mathematical Physics in Playa del Carmen (Mexico) 2; and at the 2008 International Summer School on Computa

14、tional Methods in Gravitation and Astrophysics held in Pohang (Korea) 3. It is devoted to the 3+1 formalism of general relativity, which constitutes among other things, the theoretical founda- tions for numerical relativity. Numerical techniques are not covered here. For a pedagogical introduction t

15、o them, we recommend instead the lectures by Choptuik 4 (nite differences) and the review article by Grandclment and Novak 5 (spectral methods), as well as the numerical relativity textbooks by Alcubierre 6, Bona, Palenzuela-Luque and Bona-Casas 7 and Baumgarte and Shapiro 8. The prerequisites are t

16、hose of a general relativity course, at the undergraduate or graduate level, like the textbooks by Hartle 9 or Carroll 10, or part I of Walds book 11, as well as track 1 of the book by Misner, Thorne and Wheeler 12. The fact that the present text consists of lecture notes implies two things: the cal

17、culations are rather detailed (the experienced reader might say too detailed), with an attempt to made them self-consistent and complete, trying to use as infrequently as possible the famous phrases as shown in paper XXX or see paper XXX for details; the bibliographical references do not constitute

18、an extensive survey of the lit- erature on the subject: articles have been cited in so far as they have a direct connection with the main text. The book starts with a chapter setting the mathematical background, which is differential geometry, at a basic level (Chap. 2). This is followed by two pure

19、ly geometrical chapters devoted to the study of a single hypersurface embedded in spacetime (Chap. 3) and to the foliation (or slicing) of spacetime by a family of spacelike hypersurfaces (Chap. 4). The presentation is divided in two chapters to distinguish between concepts which are meaningful for

20、a single hypersurface and those that rely on a foliation. The decomposition of the Einstein equation relative viito the foliation is given in Chap. 5, giving rise to the Cauchy problem with constraints, which constitutes the core of the 3+1 formalism. The ADM Hamil- tonian formulation of general rel

21、ativity is also introduced in this chapter. Chapter 6 is devoted to the decomposition of the matter and electromagnetic eld equations, focusing on the astrophysically relevant cases of a perfect uid and a perfect conductor (ideal MHD). An important technical chapter occurs then: Chap. 7 introduces s

22、ome conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations. As a by-product, we also discuss the Isenberg-Wilson-Mathews (or conformally at) approximation to general relativity. Chapter 8 details the various global quantities assoc

23、iated with asymptotic atness (ADM mass, ADM linear momentum and angular momentum) or with some symmetries (Komar mass and Komar angular momentum). In Chap. 9, we study the initial data problem, presenting with some examples two classical methods: the conformal transversetraceless method and the conf

24、ormal thin-sandwich one. Both methods rely on the conformal decomposition that has been introduced in Chap. 7. The choice of spacetime coordinates within the 3+1 framework is discussed in Chap. 10, starting from the choice of foliation before discussing the choice of the three coordinates in each le

25、af of the foliation. The major coordinate families used in modern numerical relativity are reviewed. Finally Chap. 11 presents various schemes for the time integration of the 3+1 Einstein equations, putting some emphasis on the most successful scheme to date, the BSSN one. Appendix A is devoted to b

26、asic tools of the 3+1 formalism: the conformal Killing operator and the related vector Laplacian, whereas Appendix B provides some computer algebra codes based on the Sage system. A web page is dedicated to the book, at the URL http:/relativite.obspm.fr/3p1 This page contains the errata, the clickab

27、le list of references, the computer algebra codes described in Appendix B and various supplementary material. Readers are invited to use this page to report any error that they may nd in the text. I am deeply indebted to Micha Bejger, Philippe Grandclment, Alexandre Le Tiec, Yuichiro Sekiguchi and N

28、icolas Vasset for the careful reading of a pre- liminary version of these notes. I am very grateful to my friends and colleagues Thomas Baumgarte, Micha Bejger, Luc Blanchet, Silvano Bonazzola, Brandon Carter, Isabel Cordero-Carrin, Thibault Damour, Nathalie Deruelle, Guillaume Faye, John Friedman,

29、Philippe Grandclment, Jos Maria Ibez, Jos Luis Jaramillo, Jean-Pierre Lasota, Jrme Novak, Jean-Philippe Nicolas, Motoyuki Saijo, Masaru Shibata, Keisuke Taniguchi, Koji Uryu, Nicolas Vasset and Loc Villain, for the numerous and fruitful discussions that we had about general rel- ativity and the 3+1

30、formalism. I also warmly thank Robert Beig and Christian Caron for their invitation to publish this text in the Lecture Notes in Physics series. Meudon, September 2011 ric Gourgoulhon viii PrefaceReferences 1. http:/www.luth.obspm.fr/IHP06/ 2. http:/www.smf.mx/*dgfm-smf/EscuelaVII/ 3. http:/apctp.or

31、g/conferences/ 4. Choptuik, M.W.: Numerical analysis for numerical relativists, lecture at the VII Mexican school on gravitation and mathematical physics, Playa del Carmen (Mexico), 26 November-1 December 2006 2; available at http:/laplace.physics.ubc.ca/People/matt/Teaching/ 06Mexico/ 5. Grandclmen

32、t, P. and Novak, J.: Spectral methods for numerical relativity, Living Rev. Relat. 12, 1 (2009); http:/www.livingreviews.org/lrr-2009-1 6. Alcubierre, M.: Introduction to 3+1 Numerical Relativity. Oxford University Press, Oxford (2008) 7. Bona, C., Palenzuela-Luque, C. and Bona-Casas, C.: Elements o

33、f numerical relativity and relativistic hydrodynamics: from einsteins equations to astrophysical simulations (2nd edition). Springer, Berlin (2009) 8. Baumgarte, T. W. and Shapiro, S. L.: Numerical relativity. Solving Einsteins equations on the computer, Cambridge University Press, Cambridge (2010)

34、9. Hartle, J.B.: Gravity: An introduction to Einsteins general relativity, Addison Wes- ley(Pearson Education), San Fransisco (2003); http:/ 0,6533,512494-,00.html 10. Carroll, S.M.: Spacetime and geometry: an introduction to general relativity, Addison Wesley (Pearson Education), San Fransisco (200

35、4); http:/ spacetimeandgeometry/ 11. Wald, R.M.: General relativity, University of Chicago Press, Chicago (1984) 12. Misner, C.W., Thorne, K.S. and Wheeler, J.A.: Gravitation, Freeman, New York (1973) Preface ixContents 1 Introduction. 1 References . . . . . . . . . . . . . . . . . . . . . . . . . .

36、 . . . . . . . . . . . . . . . 2 2 Basic Differential Geometry . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Differentiable Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Notion of Manifold. . . . . . . . . . . . . . . . .

37、 . . . . . . . . 6 2.2.2 Vectors on a Manifold . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.5 Fields on a Manifold. . . . . . . . .

38、. . . . . . . . . . . . . . . 13 2.3 Pseudo-Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Signature and Orthonormal Bases. . . . . . . . . . . . . . . 14 2.3.3 Metric Duality . . . . . . . .

39、. . . . . . . . . . . . . . . . . . . . 15 2.3.4 LeviCivita Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Affine Connection on a Manifold . . . . . . . . . . . . . . . 17 2.4.2 LeviCivita Conn

40、ection. . . . . . . . . . . . . . . . . . . . . . 20 2.4.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.4 Weyl Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 Lie Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41、25 2.5.1 Lie Derivative of a Vector Field. . . . . . . . . . . . . . . . 25 2.5.2 Generalization to Any Tensor Field . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Geometry of Hypersurfaces . 2 9 3.1 Introduction . . . .

42、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Framework and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Hypersurface Embedded in Spacetime. . . . . . . . . . . . . . . . . . 30 xi3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .

43、 . . . . 30 3.3.2 Normal Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.3 Intrinsic Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.4 Extrinsic Curvature. . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.5 Examples: Surfaces Embedded in the Euclidean S

44、paceR 3 . 3 6 3.3.6 An Example in Minkowski Spacetime: The Hyperbolic SpaceH 3 . 4 0 3.4 Spacelike Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 The Orthogonal Projector . . . . . . . . . . . . . . . . . . . . 44 3.4.2 Relation Between K andrn . 4 6 3.4.3 Links Between

45、 ther and D Connections . . . . . . . . . 47 3.5 GaussCodazzi Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5.1 Gauss Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.2 Codazzi Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References . .

46、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Geometry of Foliations. 5 5 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Globally Hyperbolic Spacetimes and Foliations . . . . . . . . . . . 55 4.2.1 Globally Hyperb

47、olic Spacetimes. . . . . . . . . . . . . . . . 55 4.2.2 Definition of a Foliation . . . . . . . . . . . . . . . . . . . . . 56 4.3 Foliation Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.1 Lapse Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2

48、Normal Evolution Vector . . . . . . . . . . . . . . . . . . . . 57 4.3.3 Eulerian Observers . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.4 Gradients of n and m . 6 3 4.3.5 Evolution of the 3-Metric . . . . . . . . . . . . . . . . . . . . 64 4.3.6 Evolution of the Orthogonal Projector. . . . . . . . . . . . 66 4.4 Last Part of the 3+1 Decomposition of the Riemann Tensor . . . 67 4.4.1 Last Non Trivial Projection of the Spacetime Rieman

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报