1、2021年海南高考数学试题一选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1. 复数在复平面内对应点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 设集合,则( )A B. C. D. 3. 抛物线的焦点到直线的距离为,则( )A. 1B. 2C. D. 44. 北斗三号全球卫星导航系统是我国航天事业的重要成果在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离)将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数地球表面上能直接观测
2、到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )A 26%B. 34%C. 42%D. 50%5. 正四棱台上下底面的边长分别为2,4,侧棱长为2,则其体积为( )A. B. C. D. 6. 某物理量的测量结果服从正态分布,下列结论中不正确的是( )A. 越小,该物理量在一次测量中在的概率越大B. 越小,该物理量在一次测量中大于10的概率为0.5C. 越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. 越小,该物理量在一次测量中落在与落在的概率相等7. 已知,则下列判断正确的是( )A. B. C.
3、D. 8. 已知函数的定义域为,为偶函数,为奇函数,则( )A. B. C. D. 二选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分9. 下列统计量中,能度量样本的离散程度的是( )A. 样本的标准差B. 样本的中位数C. 样本的极差D. 样本的平均数10. 如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点则满足的是( )A. B. C. D. 11. 已知直线与圆,点,则下列说法正确的是( )A. 若点A在圆C上,则直线l与圆C相切B. 若点A在圆C内,则直线l与圆C相离C. 若点A
4、圆C外,则直线l与圆C相离D. 若点A在直线l上,则直线l与圆C相切12. 设正整数,其中,记则( )A. B. C. D. 三填空题:本题共4小题,每小题5分,共20分13. 已知双曲线的离心率为2,则该双曲线的渐近线方程为_14. 写出一个同时具有下列性质的函数_;当时,;是奇函数15. 已知向量,_16. 已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是_四解答题:本题共6小题,共70分解答应写出文字说明证明过程或演算步骤17. 记是公差不为0的等差数列的前n项和,若(1)求数列的通项公式;(2)求使成立的n的最小值18. 在中,角、所对的边长分别为
5、、,.(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形?若存在,求出的值;若不存在,说明理由19. 在四棱锥中,底面是正方形,若(1)证明:平面平面;(2)求二面角的平面角的余弦值20. 已知椭圆C的方程为,右焦点为,且离心率为(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切证明:M,N,F三点共线的充要条件是21. 一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(3)根据你的理解说明(2)问结论的实际含义22. 已知函数(1)讨论的单调性;(2)从下面两个条件中选一个,证明:有一个零点;