1、生物化学教案生物化学教案第一章 绪论一、生物化学的含义生物化学是云应化学的理论、方法和技术研究生物体的化学组成、化学变化及其与生理功能相联系的一门科学。二、生物化学的内容有关营养专业的生物化学即不同于以研究生物体的化学组成、生命物质的结构和功能、生命过程中物质变化和能量变化的规律,以及一切生命现象的化学原理为基本内容的普通生物化学,也不同于研究食品的组成、主要结构、特性及其产生的化学变化为基本内容的食品化学,而是将二者的基本原理有机的结合起来,应由与食品、营养的一门交叉学科。三、学习和研究生物化学是应注意以下几个问题:1、注意把握有关食品生物化学的基础知识,注意食品的组成、特性、生理功用以及在
2、加工、贮存、代谢构成中所发生的化学变化。2、正确处理好理解和记忆的关系。3、注意知识的不断总结4、学会自学第二章 蛋白质的化学第一节 概述一、蛋白质的概念蛋白质是由氨基酸构成的具有特定空间结构的构分子有机化合物。二、蛋白质的生理功能1、是构成组织细胞的最基本物质蛋白质含量占干重45%2、是生命活动的物质基础A、酶的化学本质是蛋白质B、抗体是血清中的r球蛋白C、既有的收缩则是肌球蛋白和肌动蛋白E、激素也是蛋白质3、供给能量每一克蛋白质在体内氧化分解提供的能量为417kj第二节 蛋白质的化学组成一、蛋白质的元素组成碳、氢、氧、氮,一些蛋白质含有硫;有些含有磷二、蛋白质的基本组成单位氨基酸(一)蛋白
3、质的基本单位是氨基酸(二)氨基酸的结构特点氨基酸天然氨基酸有300多种,但是组成蛋白质的氨基酸只有二十种。1、及有酸性的羧基(COOH),也有碱性的氨基(NH2),因此氨基酸是两性电解质,在溶液中的带电情况,随溶液的PH值而变化。等电点PH=PI时,氨基酸为中性,最易沉淀,带电量为0。2、除甘氨酸外,其他氨基酸都有旋光性,蛋白质中为L型。3、各种氨基酸的R集团结构和性质不同,他们决定蛋白质性质。结构通式4、色泽与状态:各种常见氨基酸均为无色结晶。5、溶解度:氨基酸一般都溶于水,微溶于醇,不溶于乙醚。所有氨基酸都能溶于强酸、强碱溶液中。6、氨基酸及其某些衍生物具有一定的味感,味感与氨基酸的种类和
4、立体结构有关。一般来讲,D型氨基酸多数带甜味,甜味最强的是D色氨酸,可达蔗糖的40倍;L型氨基酸具有天、苦、鲜、酸4种不同味感。(二)氨基酸的分类。1、营养学分类:必需氨基酸和非必需氨基酸,不能在体内合成,必须由食物提供的氨基酸成为必需氨基酸。20种氨基酸中只有赖、色、苯丙、甲硫、苏、亮、异亮、颉氨酸为必需氨基酸,对于婴儿,组氨酸也是必须的。2、根据R集团性质分类中性氨基酸甘氨酸 甘 Gly丙氨酸 丙 Ala颉氨酸 颉 Val 脂肪族氨基酸亮氨酸 亮 Leu异亮氨酸 异亮 Ile丝氨酸 丝 Ser含羟基苏氨酸 苏 Thr半胱氨酸 半 Cys 含硫基甲硫氨酸 蛋 Met脯氨酸 脯 Pro苯丙氨酸
5、 苯丙 Phe 芳杂环酪氨酸 酪 Tyr色氨酸 色 Trp天冬酰胺 Asn 酰胺谷酰胺 Gln酸性氨基酸:天冬氨酸 天冬 Asn谷氨酸 谷 Glu碱性氨基酸:精氨酸 精 Arg组氨酸 组 His赖氨酸 赖 Lys(三)氨基酸的化学性质1、氨基的反应例:与甲醛反应(中性PH值条件)反应结果使其碱性减弱,氨基酸中的羧基就可以和普通脂肪酸一样解离,充分显示出它的酸性。在食品检测中常用这个性质来定量测定食品中的氨基酸含量。如,酱油。2、羧基的反应这是食品中胺的主要来源特别是腐胺、尸胺,使食品腐败的标志。3、羰氨反应(美拉德反应)羰氨反应制具有羰基的化合物与具有氨基的化合物发生一吸附在反应,最后形成黑色
6、素的过程。(1)初级阶段还原糖中的羰基原基发生简单的反应。(2)高级阶段初级产物相互反应,使高级阶段的反应变得更加复杂。成立含氮、氧、硫的有香气的杂环化合物,使食品又陪烤香和焦香,是主要生香阶段。(3)最终阶段是主要的生色阶段,高级阶段的不饱和羰基化合物等失水,缩合,生成褐色素。含氮化合物的参与,生成黑褐色的含氮色素,食品外表形成一层坚硬的外壳。此聚合物的化学性质稳定,能使食品的贮存期延长。4、成肽反应一个氨基酸分子中的氨基与另一个氨基酸分子中的羧基脱水缩合,形成的化合物成肽。两个氨基酸缩合形成二肽,多个较多台,多肽通常呈线状。有的低肽分子也有味感在食品中起着风味作用。(四)氨基酸的合理营养1
7、、各种动物的生长和发育都需要一定的氨基酸,尤其是必需氨基酸。2、必需氨基酸不但两要充分,而且互相要有一定的比例。只有当食品蛋白质中的必需氨基酸的数量和比例与合成机体细胞所需的必需氨基酸的数量,比例一致时,才能最大限度的充分利用食品白质。氨基酸(蛋白质)的合理营养,这样的蛋白质称为完全蛋白质。(五)氨基酸在食品加工的作用调味剂 营养强化剂 增香作用1、氨基酸的味D色氨酸,甜度强,是有发展前途的甜味剂。L谷氨酸,主要存在于植物蛋白中,具有酸味和鲜味两种味,其中以酸味为主。加碱适当中和后生成谷氨酸钠盐,酸味消失,鲜味增强味精的主要成分。味精+碱性溶液 谷氨酸二钠(无鲜味)味精+高酸度溶液 谷氨酸(鲜
8、味减弱)味精在高于120的温度下或长时间加热会产生焦谷氨酸钠,无鲜味,对人体有害。2、风味前体物质羰氨反应 产香、产色氨基酸在加热、或在细菌分解下产生某味风味物质。第三节 蛋白质的分子结构蛋白质的功能主要有其结构所决定。蛋白质的结构复杂,具有多层次结构。一、蛋白质的一级结构构成蛋白质的各种氨基酸在多肽链中的排列顺序,称为蛋白质的一级结构(Primary Structure)。多肽链氨基酸的顺序是由基因上的遗传信息,即DNA分子中的核苷酸排列顺序所决定。肽键与肽链:一个氨基酸的羧基与另一个氨基酸的氨基脱水缩合形成的共价键(CONH)称为肽键,又称酰胺键。氨基酸通过肽键连接起来的化合物称为胎。有两
9、个氨基酸形成的肽称为二肽,三个氨基酸形成的叫三肽,十肽以下称为寡肽,十肽以上称为多肽。P.11 牛胰岛素的一级结构肽键中存在的其他公家间也包括在一级结构中,这些是半胱氨酸残基之间的一级二硫键,它们在不同多肽链之间,或同一条链不同部位之间。二、蛋白质的空间结构(一)蛋白质的二级结构蛋白质的二级结构是指多肽链主链盘旋、折叠形成的主链构象。形成蛋白质二级结构是基础是肽键平面,肽键中的C、O、N、H四个原子和两个碳原子都在同一个平面上。蛋白质二级结构的形成有螺旋、折叠、转角和不规则卷曲等几种。维持二级结构稳定的化学键是氢键。(二)蛋白质的三级结构蛋白质的三级结构是指整条多肽链所有原子的排列方式,包括多
10、肽分子主链及侧链的构象。具有三级结构的蛋白质才有生物学活性。蛋白质三级结构中各种次级键包括1、氢键2、二硫键3、离子键4、疏水基互相作用(疏水键)(三)蛋白质的四级结构蛋白质的四级结构是指两个或两个以上独立三级结构的多肽链借次级键(氢键、疏水键、盐键)结合而形成的复杂结构,四级结构中的每条具有独立三级结构的多肽链称为亚基。第三节 蛋白质的理化性质一、蛋白质的两性解离和等电点当蛋白质处于某一PH溶液时,蛋白质分子上正、负电荷相等,净电荷为零,蛋白质为兼性离子,此时PH之称为该蛋白质的等电点。含碱性氨基酸,PI高;含酸性氨基酸PI低。二、蛋白质的高分子性质蛋白质分子量从一万到十万。蛋白质亲水胶体溶
11、液的稳定是分子表面水化层和电荷层。三、蛋白质的变性与凝固1、蛋白质的变性蛋白质在某些理化因素影响下,其特定空间结构破坏而导致理化性质改变和生物活性丧失称为蛋白质的变性。(1)物理因素与变性热变性提高温度对天然蛋白质最重要的影响是促使它们的结构发生变化。辐射变性如果射线的能量足够高,也会导致蛋白质构象的转变。运动变性由振动、捏合、打擦产生的机械运动会破坏蛋白质分子的结构,从而使蛋白质变性。(例如:打鸡蛋)高压变性高压变形发生的原因主要是蛋白质的柔性及可压缩性。(2)化学因素与变性PH值与变性极端PH 肿胀、展开PI 易聚集、沉淀表面活性剂与变性有机溶质与变性 有机溶质(尿素等)诱导蛋白质变性有机
12、溶剂与变性 大多数有机溶剂被认为是蛋白质的变形剂金属离子与变性2、蛋白质的胶体性质(1)蛋白质胶体溶于水的蛋白质能形成稳定的亲水胶体,统称为蛋白质溶胶。常见的豆浆、鸡蛋清、牛奶、肉冻蛋白质的体积很大,而且由于水化作用是蛋白质分子表面带有水化层,更增大了分子体积,粘度比一般小分子溶液大得多。如果蛋白质分子带有电荷,增加了水化层的厚度,则溶胶粘度变得更大。蛋白质溶胶有较大吸附能力。(2)蛋白质凝胶食品中许多蛋白质以您胶状态存在,如新鲜的鱼肉,禽肉、皮、筋、水产动物、豆腐制品及面筋制品等,可以看成水分子散在蛋白质凝胶的网络结构中,他们有一定的弹性、韧性和可加工性。(3)溶胶与凝胶的相互关系蛋白质在生
13、物体内常以溶胶和凝胶两种状态存在,入蛋清和蛋白,肉酱内的蛋白质和肌肉纤维。蛋白质溶胶能发生胶凝作用形成凝胶,形成凝胶的过程中,蛋白质分子的多肽链之间各集团以副键相互交联,形成网络结构,水份充满网络结构之间不析出。 氧血液 凝胶 酶 盐豆浆 凝胶四、蛋白质的沉淀蛋白质分子聚集从溶液中析出的现象称为蛋白质的沉淀。(一)盐析(不变性)在蛋白质溶液中加入高浓度的中性盐,使蛋白质从溶液中析出的现象。盐浓度稀蛋白质溶解度增加(盐溶)蛋白质表面电荷吸附盐离子之后,增强亲水能力。盐浓度高盐与蛋白质争夺与水结合,破坏蛋白质的水化层中和蛋白质电荷,破坏蛋白质电荷层。(二)有机溶剂沉淀法(变性)乙醇、甲醇、丙酮等能
14、破坏蛋白质水化膜是蛋白质沉淀。乙醇消毒就是这个道理。(三)重金属盐沉淀法(变性)重金属离子如Cu2+、Hg2+、Pb2+、Ag+等可以与蛋白质结合形成不溶于水的蛋白质沉淀,引起蛋白质变性。(在PHPI时)(四)生物碱试剂沉淀法生物碱可以蛋白质正离子结合,形成不溶性盐而沉淀。(PHPI时)(五)热凝固沉淀蛋白质受热变形后,再加少量盐类或将PH值调至等电点,则很容易沉淀。 点入盐卤or石膏豆腐工艺:豆浆煮沸 点入酸浆或葡萄糖酸内酯(调等电点)五、蛋白质的呈色反应蛋白质分子中,肽键及某些氨基酸残基的化学基团,可与某些化学试剂反应显色,称为蛋白质显色反应。六、蛋白质的水解与分解蛋白质在酸、碱、酶的作用
15、下发生水解作用。 水解单纯蛋白质 氨基酸 水解结合蛋白质 氨基酸+非蛋白物质(糖、色素、脂肪)产生小分子肽、低肽低肽增加风味过度加热产生有害物质在腐败菌作用下分解,产生有害物质。第四节 蛋白质的功能性质和营养性质1、蛋白质的水化性和持水性蛋白质的许多功能性质,都取决于蛋白质和水的作用。(1)蛋白质的水化蛋白质在水中存在的方式直接影响着食物的质构和口感。干燥的蛋白质原料并不能直接加工,需先将其水化。蛋白质水化过程。干蛋白质 水分子通过与极性部分结合而被吸附多层水吸附液态水凝聚溶胀溶剂分散 溶液 溶胀的不溶性离子或块影响蛋白质水化的因素首先是蛋白质自身的情况。蛋白质比表面积大,表面极性基团数目多,
16、多孔结构都有利于蛋白质的水化。环境因素也会影响蛋白质的水化程度PH值温度盐(2)蛋白质的持水性蛋白质的持水性是指水化了的蛋白质胶体牢固缚住水不丢失的能力。肌肉蛋白质持水性越好,意味着肌肉中水的含量较高,制作出的食品口感鲜嫩。PH(使肌肉远离等电点,经过排酸的肌肉避免过度受热(肌肉表面)2、蛋白质的膨润蛋白质的膨润是指蛋白质吸水后不溶解,在保持水分的同时赋予制品以强度和粘度的一种重要功能特性。例如:干凝胶形式保存的干明胶、鱿鱼、海参。膨润吸水分四个阶段: 吸水水量少,亲水基团(NH2,COOH)等吸附的结合水。 渗透作用进入凝胶内部的水,这部分是体相水。干蛋白质凝胶的膨润与凝胶干制过程中蛋白质的
17、变性程度有关。干制脱水,蛋白质变性程度越低,发制时的膨润速度越快,复水性越好。真空冷冻干燥得到的干制品对蛋白质的变性作用最低,所以,复水后产品质量最好。蛋白质在远离其等电点的情况下水化作用较大,所以,许多原料采用碱发制。碱性蛋白质容易产生有毒物质,要严格控制,并在发制完成后漂洗。碱是强的氢键断裂剂,过度膨润会导致制品丧失应有粘弹性和咀嚼性。第五章 蛋白质的营养性质与食品加工1、蛋白质的质量蛋白质的质量主要取决于它的必要的氨基酸的组成和消化率。主要品种的谷类和豆类的蛋白质往往缺乏至少一种必需氨基酸。2、消化率蛋白质消化率的定义是人体从食品蛋白质吸收的氮占摄入的氮的比例。动物性蛋白质与植物性蛋白质
18、相比具有较高的消化率。一些因素影响着食品蛋白质消化率。蛋白质结构 天然蛋白质通常比部份变性蛋白质难水解完全。抗营养因子 多数植物分离蛋白和浓缩含有胰蛋白酶和胰凝乳蛋白抑制剂,抑制种子蛋白质的吸收。结合 蛋白质与多糖及食用纤维相互作用,也会降低他们的水解速度和彻底性。加工 蛋白质经受高温和碱处理,会导致包括赖氨酸残基在内的一些氨基酸残基发生化学变化,会降低蛋白质的消化率。3、食品加工对蛋白质功能与营养价值的影响热处理的影响大多数食品蛋白质只在较窄的温度范围内才表现出生物或功能性质。从营养学角度来看,温和的热处理所引起的变化一般是有利的。例如:热可使酶失活,防止食品、色、味的不利变化。大豆、花生、
19、菜豆等种子和叶片中存在蛋白质抑制剂,抑制蛋白质水解酶,影响Pr的利用率,同时还可能造成食物中毒。低温处理的影响延缓微生物生长,抑制酶活性及化学反应。A、 冷却:蛋白质稳定,微生物也抑制。B、冷冻:肉类冷冻与解冻,组织及细胞膜破坏,酶被释放,使蛋白质分解,但不会使蛋白质营养损失。鱼蛋白很不稳定,冷冻后,肌球蛋白变性,与肌蛋白反应,风味破坏。脱水的影响目的在于保藏(1)传统脱水(2)真空干燥(3)冷冻干燥(4)喷雾干燥(5)薄膜干燥碱处理的影响会降低蛋白质的营养价值,尤其加热过程中更严重。但分离、起泡、乳化要靠碱处理。第三章 核酸的化学核酸是由核苷酸组成的具有复杂三维空间结构的大分子化合物,是遗传
20、的物质基础。核酸分为两类,一类是脱氧核糖核酸(DNA),主要存在于细胞核的染色质中,另一类是核糖核酸(RNA)主要存在于细胞质中。RNA按结构和功能不同又可分为三类:核糖体RNA,信使RNA和转运RNA。第一节 核酸的化学组成核酸的分子由碳、氢、氧、氮、磷五种元素组成,磷元素在核算中含量恒定。DNA平均含磷为99%,RNA为9.4%。一、核算的基本组成单位核苷酸(一)核酸是大分子化合物,经水解得到他的基本结构单位核苷酸,核苷酸可水解成核苷和磷酸。核苷可水解成戊糖和碱基(嘌呤和嘧啶)。 戊糖 核苷核酸 核苷酸 碱基磷酸(二)核苷酸的组成1、核苷戊糖与碱基缩合形成的化合物称为核苷。核苷分子中的核戊
21、糖有两种:核糖和脱氧核糖。为了与碱基中的C相区别,戊糖的C原子顺序加“撇”(核糖结构式)核苷分子中的碱基分为嘌呤碱和嘧啶碱。嘌呤碱主要有腺嘌呤和鸟嘌呤,嘧啶碱主要有胞嘧啶、尿嘧啶、胸腺嘧啶。 嘌呤 嘧啶2、核苷酸核苷分子中戊糖环上羟基磷酸酯化,形成核苷酸。5核苷酸为主要存在的。(三)核苷酸的连接方式3,5磷酸二酯键RNA是核糖核苷酸链;DNA是脱氧核糖核苷酸链。三、体内某些重要的核苷酸衍生物凡含有一个磷酸基的核苷酸统称为一磷酸核苷。(一)多磷酸核苷5核苷酸的磷酸还能与磷酸结合而生成二磷酸核苷和三磷酸核苷。如5腺苷酸可再加一个磷酸生成二磷酸腺苷,再加一个磷酸为三磷酸腺苷。(ADP ATP)P27
22、ATP在能量贮存、释放中起重要作用。(二)环形核苷酸3,5环腺苷酸、3,5环鸟苷酸。多种激素是通过cAMP、cGMP而发挥生理作用。第二节 核酸的分子结构一、DNA的分子结构(一)DNA分子种核苷酸的排列顺序称为DNA的一级结构。有两条脱氧核糖核酸链组成,两条链反向平行。两条链上的碱基朝内,同一水平上的一对碱基借碱基间形成的氢键互相连接,腺嘌呤(A)与胸腺嘌呤(A=T),鸟嘌呤与胞嘧啶(G=C)这是碱基配对规律。DNA分子中的两条链彼此成为称为互补链,所有DNA中磷酸和脱氧核糖的结构是相同的,DNA种核苷酸顺序可以用碱基顺序代表。(二)二级结构(1)右旋的双螺旋结构,螺旋直径2nm(2)碱基位
23、于中央,相互平行且垂直于长轴,10个碱基升一圈。双螺旋结构十分稳定,维持稳定性的主要事件基之间的堆积力,和氢键。(三)三级结构DNA的双螺旋结构的基础上进一步形成的更高级的结构。原核生物多为闭链环DNA真核生物DNA三级结构与Pr有关二、RNA的分子结构(一)RNA分子也是由3,5磷酸二酯键连接形成。一分子RNA有一条核糖核苷酸链组成。(二)RNA分子的链可以弯曲折叠,形成局部双螺旋结构,双螺旋区域腺嘌呤与尿嘧啶(AU),鸟嘌呤与胞嘧啶(GC),无法配对则以螺旋多的突环形式存在。(三)三级结构三级结构指在二级结构的基础上,进一步卷曲成为三维空间结构。第三节 核酸的性质一、一般性质(一)核酸的分
24、子量大核酸属于生物大分子物质。活体中DNA多数为线性分子,分子量很大,其溶液的粘度大。DNA相对分子量,一般在1061012,为白色絮状物。RNA相对分子量较小,一般在104105,为白色粉末。(二)核酸的两性电解质性质 磷酸基两性 碱基 磷酸基的酸性较强,故通常表现为酸性。在电场泳动,也可进行离子交换。(三)紫外吸收性质核苷、核苷酸、DNA,RNA都有吸收240290nm紫外光的特性。不同碱基的特性不同,在不同的PH、浓度时吸收值也不同。二、化学性质(一)两性电离碱基接受质子带正电荷,磷酸基团可进行酸性离解带负电。(二)变色反应核酸中含有核糖和磷酸,它们与专一的化学试剂发生颜色反应。三、核酸
25、的变形、复性与分子杂交(1)变性核酸分子中双螺旋区碱基对间的氢键,受到某种理化因素的作用而破裂变成单链的过程叫核酸的变性。伴随变性,核酸的紫外吸收值增加,增色效应DNA的热变性,不是随温度升高逐渐变化,而是在某温度时,突然发生并完成。称DNA的熔点:7080(2)复性变性DNA在适当条件下,两条彼此分开的互补单链可以恢复。复性后的理化性质及生物活性也得到部分或全部恢复。(和蛋白质相同)(3)分子杂交不同来源的变性DNA,若彼此之间有部分互补的核苷酸顺序,当他们在同一溶液中进行热变形并从高温冷却时,可以得到分子间部分配对的缔合双键。不仅DNADNA,DNARNA,RNARNA四、DNA,RNA的
26、功能(一)DNA功能(1)DNA分子能自我复制(2)DNA是遗传基因的载体DNA复制 信使RNA(mRNA) 核糖体RNA(rRNA) 转移RNA(tRNA) Pr(二)RNA的功能(1)rRNA使蛋白质生物合成的场所(2)tRNA运送氨基酸的作用(3)mRNA由DNA转录而合成,长链中有许多“三联体”信息密码,作为Pr合成的模版。五、核酸与食品加工常作为食品营养强化剂,成人每天摄入核酸总量不超过2g。1、改良食品加工的原料2、改良微生物菌种性能3、改良食品加工工艺4、应用于生产保健食品有效成分第三章 糖类糖类是自然界中最丰富的有机物,它为人类的食品提供了某些期望的组织状态,如口感和愉快的甜味
27、。更重要的是它为人类提供了主要的膳食热量他供给人类的热量占总摄入量的70%80%。第一节 糖类的分类、结构及存在一、糖类的分类糖类分为单糖、低聚糖和多糖。1、均一多糖和非均一多糖根据分子组成特点,多糖分为均一多糖和非均一多糖。同多糖是由一种单糖分子结合形成的高分子化合物,如淀粉、纤维素。杂多糖是由不同单糖或单糖和单糖衍生物结合形成的高分子化合物,如半纤维素,果胶。2、复合糖由糖和非糖物质结合成的复合物。如:糖类与脂类结合形成糖脂,糖与Pr结合形成糖蛋白。二、糖类物质的主要结构1、单糖分子的主要结构(1)手征性,对映异构手征性C简称手性C (2)D型糖和L型糖 *为手性C倒数第二号C的官能团在右
28、侧者为D型,反之为L型。 D葡萄糖(醛型)(3)单糖的环状结构和OH发生加成反应。D葡萄糖科环化成多种形式的结构。(五元环)(六元环)半缩醛羟基(C1的羟基)D、L构型中决定构型的羟基在同侧为型,反之为型。 D葡萄糖 D葡萄糖2、低聚糖分子的结构在酸性条件下与醇法生反应,失水后形成糖苷。R为糖苷配基,R与糖基和氧之间的结合方式称为糖苷键。P793、多糖的分子结构多糖有两种结构,及直链多糖和支链多糖。三、糖类在食品中的存在。糖类广泛存在于天然植物食品中,其中淀粉是人类消费的主要食品。多数天然植物食品,如蔬菜和水果中所含氮糖和低聚糖较少。注意:不同成熟度的同种植物中各类糖含量是不同的。粮食作物一般
29、在成熟后收获,主要是为了使果实中的单糖和低聚糖尽可能转化为淀粉。水果一般在成熟前采摘,是为了在贮藏期间,与后熟有关的酶促过程使贮藏淀粉转变成的低聚糖和单糖。第二节 糖类的性质及应用一、糖类的物理性质及应用1、旋光性通过光栅后只有一个振动方向的光波叫平面偏振光,简称偏光。偏光前进的方向与光波振动的方向构成的平面叫振动面,与振动面垂直的平面叫偏振面。物质使偏光的偏振面向左或右旋转一定角度的能力,叫物质的旋光性。右旋“+”,左旋“一”2、糖的旋光性及应用糖分子中都有不对称碳原子,因此,其溶液右旋光性,在一定条件下测定一定浓度糖溶液的旋光性,可计算比旋光度。根据糖的比旋光度可鉴别糖的纯度。3、甜度各种
30、单糖和低聚糖都有一定的甜味,而多糖则无甜味。名称相对甜度蔗糖1.00果糖1.33葡萄糖0.74木糖0.40规定蔗糖溶液的甜度为1,以此为基准。3、溶解性、吸湿性与结晶性单糖易溶于水,低聚糖和多糖有些能溶于水,有些则不溶。蔗糖、麦芽糖、葡聚糖都溶于水,乳糖难溶于水,淀粉不溶于水。凡是能溶于水的糖都有吸湿性,如单糖中的果糖和二糖中的蔗糖都有很高的吸湿性。此外,水溶性很小甚至不溶于水的汤有些也有吸湿性,如淀粉。糖的吸湿性,可使糖从食品中溶解出来,故含糖多的食品容易潮解。由于糖的结晶性,在温度降低时,潮解后的糖又结晶出来。如柿饼上经常出现的“白粉”,就是糖吸湿后又重新析出的结果。4、渗透压食糖在糖腌果
31、蔬食品中达50%左右时,食糖腌制品具有较高的渗透压,有效的发挥着抑制微生物的作用。糖含量高时甚至可造成微生物的大量失水而死亡。只要糖制品不接触空气,不受潮,其含糖量不因袭潮而稀释,就可以久贮不坏。二、糖类的化学性质及应用1、氧化反应所有的单糖都是还原糖,易被氧化成酸。以葡萄糖为例,因反应条件不同,有三种方式氧化 溴水(弱) HOOC(CHOH)4CH2OH葡萄糖酸 HNO3(稀)CHO(CHOH)4CH2OH HOOC(CHOH)4COOH葡萄糖二酸 酶 HOC(CHOH)4COOH葡萄糖醛酸2、还原反应 D葡萄糖 D山梨糖醇山梨醇是一种保湿剂,甜度仅是蔗糖的50%三、多糖1、淀粉.2、纤维多
32、糖(1)纤维素纤维素是植物组织中的一种结构性多糖,是组成植物细胞壁的主要成分,对细胞壁的机械物理性能起着重要的作用。纤维素的性质纤维素是白色纤维状固体,不溶于水。纤维的化学性质稳定,但也能水解,不过水解要高浓度的强酸存在才能进行。食草动物的消化道理,有一种特殊的微生物能分泌纤维素酶,能使纤维素水解成葡萄糖。纤维素的作用虽然人体的消化器官不能消化纤维素,但膳食中必须要含有适量的纤维素。它有促进肠道蠕动解除便秘,防止结肠病变的作用。(2)半纤维素半纤维素是一些与纤维素一起存在于植物细胞壁中的多糖的总称。木聚糖是半纤维素类中最丰富的一种。玉米穗轴等原料可制取木糖。(3)膳食纤维膳食纤维并不一定是纤维
33、,它由两部分组成,一部分是不溶性的植物细胞壁材料,主要是纤维素与木质素,另一部分是非淀粉的水溶性多糖。它们都不能消化。水溶性膳食纤维有生理功能,其它水溶性多糖也有类似功能,其中包括一些亲水胶体,如果胶、瓜尔胶以及把纤维素等。每天摄入5g瓜尔胶可以改进血糖指数,降低13%血清胆固醇,但不会降低高密度胆固醇。3、糖原糖原始动物体中的主要多糖。糖原始葡萄糖极容易利用的贮藏形式,它是由葡萄糖残基组成的非常大的有分支的高分子化合物。糖原的两个主要贮藏部位为肝脏和骨骼肌。肝脏中的糖原浓度比肌肉中要高些。但肌肉中的糖原总量比肝脏大。正常人体所含的糖原共400g左右,其中肝糖原用以维持血液中葡萄糖含量的恒定,
34、肌糖原则为肌肉的能量储量形式之一。第五章 脂类、生物膜脂类是生物体所有能溶于有机溶剂的多种化合物的总称。食用之类是人类主要的食品之一,它不仅具有重要的营养价值为人体提供热量和必需的脂肪酸,而且能改善食品风味。第一节 脂类的分类,存在与生理功能一、脂类的分类根据分子组成和结构特点,通常把脂类分为单纯酯和类脂。(脂肪、类脂及其衍生物)脂肪是由一分子甘油和三分子脂肪酸组成的酯。类植主要有磷脂、糖脂、胆固醇酯等。1、单纯脂单纯脂类是仅有脂肪酸和醇所组成的酯。根据脂肪酸得结构分类a.饱和脂肪酸分子中碳原子间以单键相连接的一元羧酸。天然油脂中的饱和脂肪酸的通式为CnH2nO2。从4个碳至24个碳原子的脂肪
35、酸常常存在于油脂中,而24个碳原子以上的则存在于腊中。动植物油脂中最常见的饱和脂肪酸有丁、己、辛、癸酸和高级饱和脂肪酸如十六酸(软脂酸)与十八酸(硬脂酸)。b.不饱和脂肪酸凡是碳链中含有碳碳双键的脂肪酸都称为不饱和脂肪酸。根据分子中含双键的数目又分为一烯酸、二烯酸、多烯酸,个别有炔酸。脂肪酸分子中双键的数目越多,其不饱和程度越高。不饱和脂肪酸在一般的植物油脂中也都存在,而且鱼油含有多种三烯以上的多烯酸,而陆地动物的脂肪中,只含有少量的二烯和多烯脂肪酸。不饱和脂肪酸在常温下为液体,所以植物油脂在常下也变为液体。含量比饱和脂肪酸多。根据脂肪酸的营养功能分类a.必需脂肪酸有几种不饱和脂肪酸是维持人体
36、正常生长所必需,而体内又不能合成的脂肪酸,这些脂肪酸称为必需脂肪酸。必需脂肪酸有:亚油酸、亚麻酸和花生四烯酸。其中亚油酸之最主要的必需脂肪酸,必须由食物来供给。必需脂肪酸最佳来源是植物油,菜籽油其他植物油,动物油脂羊、牛脂,禽类脂肪(鸭油、鸡油)猪油。肉类中:鸡、鸭肉猪、羊、牛肉,动物心肝肌肉,瘦肉中含量肥肉一般认为至少必须脂肪酸应占每日总热量供给量的2%,每日需8g左右。b.其他功能性脂肪酸现已发现一些多不饱和脂肪酸对人体有特殊的功能(双键位置在的三个第四个碳原子之间)。发现最重要的这类脂肪酸是C22:6(DHA)和C20:5(EPA),都属于重要功能性物质。DHA有很好的健脑功能,并对老年
37、性痴呆症,异位性皮炎,高血症有疗效。EPA能使血小板凝聚能力降低,出血后血液凝固时间变长,心肌梗死发病率降低。提高高密度胆固醇(优质胆固醇),降低低密度胆固醇(劣质胆固醇)的浓度。DHA和EPA的最主要来源是深海鱼油,如沙丁鱼、乌贼、鳕鱼。不饱和脂肪酸摄入过量,会增加体内不饱和游离基团的数目,又导致疾病,特别是肠道肿瘤和乳腺癌的可能。饱和脂肪酸摄入过量会增加血脂含量,但对大脑的发育起着不可替代的作用,所以长期摄入不足会影响大脑发育。饱和:多不饱和:单不饱和 1:1:1(2)油脂的分类按油脂来源分类油脂根据来源分为植物油脂和动物油脂两大类。根据油脂在常温下的状态,分为植物油(芝麻油、花生油)和植
38、物脂(可可脂、椰子脂);动物油(鱼油)和动物脂(猪脂、牛脂、乳脂)。按油脂中亚油酸含量分类把油脂分为低亚油酸含量油脂(0%15%),棕榈油、羊、牛脂;中亚油酸含量(15%35%),杏仁油、花生油;高亚油酸含量(35%65%),芝麻油、葵花籽油。根据油脂的结构分类a.甘油三酯也叫真脂或中性脂,有三个脂肪酸分子分别与甘油的三个纯羟基脱水缩合所成的酯。三脂酰甘油分子,大多数是两种或三种不同的脂肪酸参加组成,称为混合甘油酯,由同一种脂肪酸所成的三酯酰甘油称为单纯甘油酯。b.蜡蜡是由高级脂肪酸与高级一元醇所生成的脂类物质。蜡在人体内部被消化,无营养价值,但对动植物来说,具有一定生理作用。(3)三酯酰甘油
39、(甘油三酯)化学结构及性质三酯酰甘油是由一分子甘油和三分子脂肪酸组成的酯。三酯酰甘油三酯酰甘油可分为单甘油酯和混甘油酯。前者三个脂肪酸是相同,后者三个脂肪酸不完全相同。天然多为含有三个不同脂肪酸的混甘油酯。三酯酰甘油在酸、碱和脂肪酶作用下,均发生水解,产物为一分子甘油和三分子脂肪酸。如果由氢氧化钠进行水解,产物是甘油和脂肪酸钠盐(肥皂)三酯酰甘油的分布脂肪主要分布在皮下、大网膜、肠系膜、内脏周围等脂肪组织中,这些部位称为脂库。成人脂肪占体重1020%,女子稍高。三酯酰甘油的生理功能a.脂肪在机体主要用于氧化功能。每氧化1g脂肪释放能量38.94kj,比等量的糖或蛋白质多一倍。b.脂肪不易导热,
40、人体皮下脂肪组织可防止热散失,而保持体温。c.内脏周围的脂肪组织可以缓冲机械性的撞击而保护内脏免受损伤,在肠道内的脂肪可协助脂溶性维生素的吸收。2、类脂类脂虽然在结构上与单纯脂不同,但在物理、化学性质方面与单纯脂有着类似之处。类脂分为复合脂和异戊二脂。(1)复合脂它是指单纯脂与非脂性成分组成的脂类化合物。主要有磷脂和糖脂。(2)异戊二烯类脂具有异戊二烯或异戊二烯聚合而成的侧链的类脂,主要有类胡萝卜素、固醇和类固醇。磷脂类磷脂是一类含磷的脂类物质。广泛存在于动物的肝、脑、神经组织和植物的种子中。磷脂可分为甘油磷脂和鞘磷脂。人体内含量最多是甘油磷脂。a.甘油磷脂甘油磷脂主要是磷脂酸的衍生物。磷脂酸与其他醇羟基化合物连接,即可组成不同的磷脂。甘油磷脂R1位脂肪酸常是饱和脂肪酸,R2位是不饱和脂肪酸。磷脂具有图特的物理性质,在脂类中其极性最大,在水和非极性溶剂中都有很大的溶解度。由于他们兼有疏水基和亲水基团,故磷脂能同时与