ImageVerifierCode 换一换
格式:PDF , 页数:28 ,大小:428.03KB ,
资源ID:5838193      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenkunet.com/d-5838193.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(The Stability of Linear Feedback systems 03 [兼容模式].pdf)为本站会员(nanchangxurui)主动上传,文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文库网(发送邮件至13560552955@163.com或直接QQ联系客服),我们立即给予删除!

The Stability of Linear Feedback systems 03 [兼容模式].pdf

1、The Stability of Linear FeedbackTheStabilityofLinearFeedbacksystemsy Astablesystemisadynamicsystemwithabounded response to a bounded inputboundedresponsetoaboundedinput.( ) Sbl(b) Nl( ) Ubl(a)Stable(b)Neutral(c)Unstable塔科马大桥倒塌视频塔科马大桥倒塌视频relativestability:inordertoenablethesystembehaviorwithreliablep

2、erformance,itnotonlyrequirethestabilityp,yqybutalsoenoughstabilitymarginsothatthesystembehavewellindistursbanceorchangingenvironment.relativestabilitystabilitymarginGainMarginPhaseMarginIntermsoflinearsystems,werecognizethatthestabilityrequirementmaybedefinedintermsofthelocationofthepolesofhld lffhl

3、d lftheclosedlooptransferfunction.TheclosedloopsystemtransferfunctioniswrittenasMizsK)(RmmmmQkkNiisssszsKsqspsT122211)(2)()()()()(whereq(s)=A(s)=0isthecharacteristicequationwhoserootsarethepolesofthld ltThttfilftimk11theclosedloopsystem.Theoutputresponseforanimpulsefunctioninput(whenN=0)isthenRmmtmQ

4、tkteBeAtymk)sin(1)(Toobtainaboundedresponse,thepolesoftheclosedloopsystemmustbeinthelefthandportionofthe5plane.Thus,anecessarymmmmmkky11)()(pp,yandsufficientconditionforafeedbacksystemtobestableisthatallthepolesofthesystemtransferfunctionhavenegativerealparts.Thth df t bilititiThemethodsofstabilityc

5、riterionThe routh hurwith stability criterionTherouthhurwith stabilitycriterionNyquist stability criterionNyquist stabilitycriterionLyapunov stabilitycriterionSTABILITYCRITERIONSTABILITYCRITERIONyapunov stability criterion.Therouthhurwith stabilitycriterion0)()(0111asasasasqsnnnncharacteristicequati

6、on:42naaas1)()(aaaaaa531421nnnnnnnaaaaaass3121132111)()(nnnnnnnnnnnaaaaaaaaaab53153132nnnnnnnncccbbbss514131nnnnnnaaaaab5310nnnhs3111nnnbbaabc10nhs311nnnbbbRouth table:four conditionsRouthtable:fourconditions Condition 1:none of the members of begin column is Condition1:noneofthemembersofbegincolumn

7、is0.di if hbf bi Condition2:1:someofthemembersofbegincolumnis0,butnotforall. Condition3:1:someofthemembersofbegincolumnis0,andforall.Condition4:Ithasmultiplerootsinimaginaryaxis.Example 1Example1AnalysisthestabilityofthefollowingsystemLiapunov stability analysisLiapunovs firstmethod(李雅普诺夫第一法)require

8、stheexplicitformsofsolutions ofthedifferentialequationscalled direct method of LiapunovcalleddirectmethodofLiapunovLiapunovs second method(李雅普诺夫第二法)Liapunov s secondmethod(李雅普诺夫第二法)notrequirethesolutions ofthedifferentialequationsmoreuseful(especiallyfornonlinearsystems,exactsolutionsmaynotbeunobtai

9、nable)ButrequiregenerationofaLiapunov function (energyfunction)called direct method of LiapunovcalleddirectmethodofLiapunovExample2:Example2:Aspringqualitydampersystemasfollows.Themotionofthesystem can be described as follows:systemcanbedescribedasfollows:0kxx fxm 1m0kf set1m0kxx fxsetxxxxxchoose st

10、ate variablexx 112xxxchoosestatevariableThenwegetstateequation:fk21xx 212fxkxxInanytime, thetotalenergyofthesystem2122212121),(kxxxxE00)(0Obviously,when,when0 x0)x(E0 x0)(0E221dd)(dfxxxxkxxExExxE22211221121dd),(dfxxxxkxtxtxxxEtOnlyat,x00/ddtEOtherwise0/ddtETheenergyofthesystemisdecresing,sothesystem

11、isstable.gyyg,yLiapunov stability analysisStabilityinthesenseofLiapunovA spherical region of radius r about an equilibrium state x aspyyAsphericalregion ofradiusr aboutanequilibriumstatexeasWhere x xe iscalledtheEuclideannorm anddefinedasrexxLetS()consistofallpointss.t.1/22221122()()()eennexxxxxxexx

12、xxLetS()consistofallpointss.t.exx000( ;, ),ttfor all ttexxIfthereisanS()correspondingtoeachS()s.t.trajectoriesstartinginS() donotleaveS() astincreasesindefinitely,anequilibriumstate xeissaidtobestableinthesenseofLiapunoveTherealnumber dependsonandalsodependsont0If doesnotdependont0,theequilibriumsta

13、texeissaidtobeuniformlystable12Liapunov stability analysisAsymptoticStabilityAn equilibrium state x is said to be asymptotically stablepyyAnequilibriumstatexeissaidtobeasymptoticallystableifitisstableinthesenseofLiapunovifeverysolutionstartingwithinS() convergestoxe,withoutygS()ge,leavingS() astincr

14、easesindefinitelyInfactitismoreimportantthanmerestabilityItisalocal concept,sosimplytoestablishasymptoticstabilitydoesnotnecessarilymeanthatthesystemwilloperateproperly13Liapunov stability analysisAsymptoticStabilitypyydomainofattraction:thesizeofthelargestregion ofasymptotically stabilityasymptotic

15、allystabilityEvery trajectory originating in the domain of attraction isEverytrajectoryoriginatinginthedomainofattraction isasymptoticallystableItisthestatespace inwhichasymptoticallystablepy pytrajectoriesoriginate14Liapunov stability analysisAsymptoticStabilityinthelargepyyIfasymptoticstability ho

16、ldsforallstates(allpointsinthestatespace)fromwhichtrajectoriesoriginate,theequilibriumstatexeissaidtobejg,qeasymptoticallystableinthelargeThatis,everysolution ofthestateequationconvergestoxeastincreases indefinitelyincreasesindefinitelyAnecessarycondition forasymptoticstableinthelarge isthattherelil

17、ib it t i thh lt tare onlyoneequilibriumstate inthewholestatespaceInpracticeitisadesirablefeaturetodetermine aregionofibililh hdibilld iasymptoticstabilitylargeenough thatnodisturbancewillexceedit15Liapunov stability analysisInstabilitypyyAnequilibriumstatexeissaidtobeunstableifforsomerealnumber0and

18、anyrealnumber 0,nomatterhowsmall,thereis alwaysastatex0inS() s.t.thetrajectorystartingatthisstate leavesS()16Liapunov stability analysisGraphicalrepresentationThe region S() bounds the initial state xpyyTheregionS()bounds theinitialstatex0TheregionS()bounds thetrajectory startingfromanyinitialstatex

19、0intheregionS()17Liapunov stability analysisPositivedefiniteness (正定性) ofscalarfunctionspyyDefn. AscalarfunctionV(x) issaidtobepositivedefineinaregion (whichincludestheoriginofthestatespace)ifV(x) fllhdf(0)0 forallnonzerostatesx intheregion andifV(0) =0Defn. AtimevaryingfunctionV(x,t) issaidtobeposi

20、tivedefine iny g( , )pfaregion (whichincludestheoriginofthestatespace)ifitisbounded frombelowbyatimeinvariantpositivedefinitefhf hd ff( )function,thatis,ifthereexistsapositivedefinitefunctionV(x)s.t.00( , )( ),( , )0,VtVfor all ttVtfor all ttxx0180( , )0,Vtfor all tt0Liapunov stability analysisNegat

21、ivedefiniteness ofscalarfunctionspyyDefn.AscalarfunctionV(x) issaidtobenegativedefineifV(x) ispositivedefinitePositivesemidefiniteness ofscalarfunctionsDefn.AscalarfunctionV(x) issaidtobepositivesemidefinite ifit is positive at all states in the region except at the originitispositiveatallstatesinth

22、eregion exceptattheoriginandatcertainotherstates,whereitiszero19Liapunov stability analysisNegativesemidefiniteness ofscalarfunctionspyyDefn.AscalarfunctionV(x) issaidtobenegativesemidefiniteif-V(x) ispositivesemidefiniteIndefiniteness ofscalarfunctionsDefn.AscalarfunctionV(x) issaidtobeindefinite i

23、fintheregion it assumes both positive and negative values noregion itassumesbothpositiveandnegativevalues,nomatterhowsmalltheregion is20Liapunov stability analysisLiapunovfunctions:pyyAscalar functionandpositivedefinite (p.d.)functionItiscontinuous togetherwith itsfirstpartialderivatives (withrespec

24、ttogfp(pitsarguments)intheregionabouttheoriginThetimederivative takenalongthetrajectory isnegativedefinite (ornegative semidefinite)negative semidefinite)isactuallythetotalderivative ofV(x,t)withrespecttot alonga( , )V x tsolutionofthesystemimplies: V(x,t)isadecreasingfunction oft( , )0V x t 2122122

25、1.( ). .V xxxp d222122.( ). .1xV xxp dx221213.( ).xV xxxp sd12221123.( ).4.( ). .V xxxp sdV xxxxnd 11221224.( ). .5.( )V xxxxndV xx xxindefinite122( )fTheorem:setlineartimeinvariantcontinuoussystem:Thenequilibriumstateis AsymptoticStabilityinthelarge(1)AllcharacteristicrootofAhavenegativerealparts.P

26、roposition1 AllcharacteristicrootofA()havenegative real parts equils to existing an real symmetric matrix P,nnRAnegativerealpartsequilstoexistinganrealsymmetricmatrixP,0 PAPATLet:AnyrealsymmetricmatrixQ0,ifitexistsrealsymmetric(2)。matrixP0,satisfyQPAPAT(2)PxxxVT)(AsliapunovfunctionTheorem1:setthesta

27、teequationofthesystem)( xfx Intheneiborhoodofequilibriumstate0exhascontinuousfirstorder)(xVpartialderivativeandsatisfys:。)。()( definite negative is)(2definite positive is)(1xVxVThenisuniformlyasymptoticallystable.If,thenisuniformlyAsymptoticStabilityinthelarge.0exx)(xV)(xVTh2t tht ttif tht)(fTheorem

28、2:setthestateequationofthesystemIntheneiborhoodofequilibriumstate0exhascontinuousfirstorderpartialderivativeandsatisfys:)(xV)( xfx py。)。()( tesemidefini negative is)(2definite positive is)(1xVxV(3)Except thatthere is points that makesbut not for all0 x0)(VThenisuniformlyasymptoticallystable.If,theni

29、suniformlyStabilityinthelarge.0exx)(xV)(xV(3)Exceptthat,thereispointsthatmakes,butnotforall.0ex0)(xVTheorem3:setthestateequationofthesystemIntheneiborhoodofequilibriumstate0exhascontinuousfirstorder)(xV)( xfx partialderivativeandsatisfys:。)。()( tesemidefini negative is)(2definite positive is)(1xVxVT

30、henisuniformlystable.0exIf,thenisuniformlyStabilityinthelarge.x)(xV)(xVTheorem4:setthestateequationofthesystem)( xfx Intheneiborhoodofequilibriumstate0exhascontinuousfirstorderpartialderivativeandsatisfys:)(xV。)。()( tesemidefini negativeor definite positive is)(2definite positive is)(1xVxVThenisunst

31、able.0 x0exyThestateequationsofsystemsasPleaseanalysisthestabilityofequilibriumpointWeobtain:Bl iS ltitifthdofmatrixP,wefindP isp.d.ByapplyingSylvesterscriterionforthep.d.ofmatrixP,wefindP isp.d.S thilib ii t i At ti St bilit i thlSothe equilibriumpointis AsymptoticStabilityinthelargeorwecan get it as follows:cangetitasfollows:cangetitasfollows:Weobtain:isp.d.)(xVWeobtain:isn.d.)(xV谢谢大家!谢谢大家!谢谢大家C

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报