ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:122.08KB ,
资源ID:6443123      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenkunet.com/d-6443123.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数字通信第五版课后题答案chap2.pdf)为本站会员(初中学霸)主动上传,文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文库网(发送邮件至13560552955@163.com或直接QQ联系客服),我们立即给予删除!

数字通信第五版课后题答案chap2.pdf

1、CHAPTER 2Problem 2.1 :P(Ai) =3?j=1P(Ai,Bj),i = 1,2,3,4Hence :P(A1) =3?j=1P(A1,Bj) = 0.1 + 0.08 + 0.13 = 0.31P(A2) =3?j=1P(A2,Bj) = 0.05 + 0.03 + 0.09 = 0.17P(A3) =3?j=1P(A3,Bj) = 0.05 + 0.12 + 0.14 = 0.31P(A4) =3?j=1P(A4,Bj) = 0.11 + 0.04 + 0.06 = 0.21Similarly :P(B1) =4?i=1P(Ai,B1) = 0.10 + 0.05 +

2、0.05 + 0.11 = 0.31P(B2) =4?i=1P(Ai,B2) = 0.08 + 0.03 + 0.12 + 0.04 = 0.27P(B3) =4?i=1P(Ai,B3) = 0.13 + 0.09 + 0.14 + 0.06 = 0.42Problem 2.2 :The relationship holds for n = 2 (2-1-34) : p(x1,x2) = p(x2|x1)p(x1)Suppose it holds for n = k,i.e : p(x1,x2,.,xk) = p(xk|xk1,.,x1)p(xk1|xk2,.,x1) .p(x1)Then f

3、or n = k + 1 :p(x1,x2,.,xk,xk+1)=p(xk+1|xk,xk1,.,x1)p(xk,xk1.,x1)=p(xk+1|xk,xk1,.,x1)p(xk|xk1,.,x1)p(xk1|xk2,.,x1) .p(x1)Hence the relationship holds for n = k + 1, and by induction it holds for any n.1Problem 2.3 :Following the same procedure as in example 2-1-1, we prove :pY(y) =1|a|pX?y ba?Proble

4、m 2.4 :Relationship (2-1-44) gives :pY(y) =13a(y b)/a2/3pX?y ba?1/3X is a gaussian r.v. with zero mean and unit variance : pX(x) =12ex2/2Hence :pY(y) =13a2(y b)/a2/3e12(yba)2/3108642024681000.050.10.150.20.250.30.350.40.450.5ypdf of Ya=2b=3Problem 2.5 :(a) Since (Xr,Xi) are statistically independent

5、 :pX(xr,xi) = pX(xr)pX(xi) =122e(x2r+x2i)/222Also :Yr+ jYi= (Xr+ Xi)ejXr+ Xi= (Yr+ jYi)ej= Yrcos + Yisin + j(Yrsin + Yicos) ?Xr=Yrcos + YisinXi=Yrsin + Yicos?The Jacobian of the above transformation is :J =?XrYrXiYrXrYiXiYi?=?cossinsincos?= 1Hence, by (2-1-55) :pY(yr,yi)=pX(Yrcos + Yisin),(Yrsin + Y

6、icos)=122e(y2r+y2i)/22(b) Y = AX and X = A1YNow, pX(x) =1(22)n/2ex?x/22(the covariance matrix M of the random variables x1,.,xnisM = 2I, since they are i.i.d) and J = 1/|det(A)|. Hence :pY(y) =1(22)n/21|det(A)|ey?(A1)?A1y/22For the pdfs of X and Y to be identical we require that :|det(A)| = 1 and (A

7、1)?A1= I = A1= A?Hence, A must be a unitary (orthogonal) matrix .Problem 2.6 :(a)Y(jv) = E?ejvY?= E?ejv?ni=1xi?= E?n?i=1ejvxi?=n?i=1E?ejvX?=?X(ejv)?nBut,pX(x) = p(x 1) + (1 p)(x) X(ejv) = 1 + p + pejv Y(jv) =?1 + p + pejv?n3(b)E(Y ) = jdY(jv)dv|v=0= jn(1 p + pejv)n1jpejv|v=0= npandE(Y2) = d2Y(jv)d2v

8、|v=0= ddv?jn(1 p + pejv)n1pejv?v=0= np + np(n 1)p E(Y2) = n2p2+ np(1 p)Problem 2.7 :(jv1,jv2,jv3,jv4) = E?ej(v1x1+v2x2+v3x3+v4x4)?E (X1X2X3X4) = (j)44(jv1,jv2,jv3,jv4)v1v2v3v4|v1=v2=v3=v4=0From (2-1-151) of the text, and the zero-mean property of the given rvs :(jv) = e12v?Mvwhere v = v1,v2,v3,v4?,M

9、 = ij.We obtain the desired result by bringing the exponent to a scalar form and then performingquadruple differentiation. We can simplify the procedure by noting that :(jv)vi= ?ive12v?Mvwhere ?i=i1,i2,i3,i4 . Also note that :?jvvi= ij= jiHence :4(jv1,jv2,jv3,jv4)v1v2v3v4|V=0= 1234+ 2314+ 2413Proble

10、m 2.8 :For the central chi-square with n degress of freedom :(jv) =1(1 j2v2)n/24Now :d(jv)dv=jn2(1 j2v2)n/2+1 E (Y ) = jd(jv)dv|v=0= n2d2(jv)dv2=2n4(n/2 + 1)(1 j2v2)n/2+2 E?Y2?= d2(jv)dv2|v=0= n(n + 2)2The variance is 2Y= E (Y2) E (Y )2= 2n4For the non-central chi-square with n degrees of freedom :(

11、jv) =1(1 j2v2)n/2ejvs2/(1j2v2)where by definition : s2=?ni=1m2i.d(jv)dv=?jn2(1 j2v2)n/2+1+js2(1 j2v2)n/2+2?ejvs2/(1j2v2)Hence, E (Y ) = jd(jv)dv|v=0= n2+ s2d2(jv)dv2=?n4(n + 2)(1 j2v2)n/2+2+s2(n + 4)2 ns22(1 j2v2)n/2+3+s4(1 j2v2)n/2+4?ejvs2/(1j2v2)Hence,E?Y2?= d2(jv)dv2|v=0= 2n4+ 4s22+?n2+ s2?and2Y=

12、 E?Y2? E (Y )2= 2n4+ 42s2Problem 2.9 :The Cauchy r.v. has : p(x) =a/x2+a2, x (a)E (X) =?xp(x)dx = 0since p(x) is an even function.E?X2?=?x2p(x)dx =a?x2x2+ a2dxNote that for large x,x2x2+a2 1 (i.e non-zero value). Hence,E?X2?= ,2= 5(b)(jv) = E?jvX?=?a/x2+ a2ejvxdx =?a/(x + ja)(x ja)ejvxdxThis integra

13、l can be evaluated by using the residue theorem in complex variable theory. Then,for v 0 :(jv) = 2j?a/x + jaejvx?x=ja= eavFor v W, then X(f)ej2fais also bandlimited. The corresponding autocor-relation function can be represented as (remember that X(f) is deterministic) :X( a) =?n=X(n2W a)sin2W? n2W?

14、2W? n2W?(1)Let us define :X(t) =?n=X(n2W)sin2W?t n2W?2W?t n2W?We must show that :E?|X(t) X(t)|2?= 0orE?X(t) X(t)?X(t) ?m=X(m2W)sin2W?t m2W?2W?t m2W?= 0(2)First we have :E?X(t) X(t)?X(m2W)?= X(t m2W) ?n=X(n m2W)sin2W?t n2W?2W?t n2W?9But the right-hand-side of this equation is equal to zero by applica

15、tion of (1) with a = m/2W.Since this is true for any m, it follows that E?X(t) X(t)?X(t)?= 0. AlsoE?X(t) X(t)?X(t)?= X(0) ?n=X(n2W t)sin2W?t n2W?2W?t n2W?Again, by applying (1) with a = t anf = t, we observe that the right-hand-side of the equationis also zero. Hence (2) holds.Problem 2.18 :Q(x) =12

16、?xet2/2dt = P N x, where N is a Gaussian r.v with zero mean and unitvariance. From the Chernoffbound :P N x e vxE?e vN?(1)where v is the solution to :E?NevN? xE?evN?= 0(2)Now :E?evN?=12?evtet2/2dt=ev2/212?e(tv)2/2dt=ev2/2andE?NevN?=ddvE?evN?= vev2/2Hence (2) gives : v = xand then :(1) Q(x) ex2ex2/2

17、Q(x) ex2/2Problem 2.19 :Since H(0) =?h(n) = 0 my= mxH(0) = 010The autocorrelation of the output sequence isyy(k) =?i?jh(i)h(j)xx(k j + i) = 2x?i=h(i)h(k + i)where the last equality stems from the autocorrelation function of X(n) :xx(k j + i) = 2x(k j + i) =?2x,j = k + i0,o.w.?Hence, yy(0) = 62x, yy(

18、1) = yy(1) = 42x, yy(2) = yy(2) = 2x, yy(k) = 0 otherwise.Finally, the frequency response of the discrete-time system is :H(f)=?h(n)ej2fn=1 2ej2f+ ej4f=?1 ej2f?2=ej2f?ejf ejf?2=4ejfsin2fwhich gives the power density spectrum of the output :yy(f) = xx(f)|H(f)|2= 2x?16sin4f?= 162xsin4fProblem 2.20 :(k

19、) =?12?|k|The power density spectrum is(f)=?k=(k)ej2fk=?1k=?12?kej2fk+?k=0?12?kej2fk=?k=0(12ej2fk)k+?k=0(12ej2f)k 1=11ej2f/2+11ej2f/2 1=2cos2f5/4cos2f 1=354cos2f11Problem 2.21 :We will denote the discrete-time process by the subscript d and the continuous-time (analog)process by the subscript a. Als

20、o, f will denote the analog frequency and fdthe discrete-timefrequency.(a)d(k)=E X(n)X(n + k)=E X(nT)X(nT + kT)=a(kT)Hence, the autocorrelation function of the sampled signal is equal to the sampled autocorrelationfunction of X(t).(b)d(k)=a(kT) =?a(F)ej2fkTdf=?l=?(2l+1)/2T(2l1)/2Ta(F)ej2fkTdf=?l=?1/

21、2T1/2Ta(f +lT)ej2FkTdf=?1/2T1/2T?l=a(f +lT)?ej2FkTdfLet fd= fT. Then :d(k) =?1/21/21T?l=a(fd+ l)/T)ej2fdkdfd(1)We know that the autocorrelation function of a discrete-time process is the inverse Fouriertransform of its power spectral densityd(k) =?1/21/2d(fd)ej2fdkdfd(2)Comparing (1),(2) :d(fd) =1T?

22、l=a(fd+ lT)(3)(c) From (3) we conclude that :d(fd) =1Ta(fdT)iff:a(f) = 0, f : |f| 1/2T12Otherwise, the sum of the shifted copies of a(in (3) will overlap and aliasing will occur.Problem 2.22 :(a)a()=?a(f)ej2fdf=?WWej2fdf=sin2WBy applying the result in problem 2.21, we haved(k) = fa(kT) =sin2WkTkT(b)

23、 If T =12W, then :d(k) =?2W = 1/T,k = 00,otherwise?Thus, the sequence X(n) is a white-noise sequence. The fact that this is the minimum value ofT can be shown from the following figure of the power spectral density of the sampled process:WWfs Wfsfs+ Wfs Wfsfs+ WWe see that the maximum sampling rate

24、fsthat gives a spectrally flat sequence is obtainedwhen :W = fs W fs= 2W T =12W(c) The triangular-shaped spectrum (f) = 1 |f|W, |f| W may be obtained by convolv-ing the rectangular-shaped spectrum 1(f) = 1/W, |f| W/2. Hence, () = 21() =131W?sinW?2.Therefore, sampling X(t) at a rate1T= W samples/sec

25、produces a white sequencewith autocorrelation function :d(k) =1W?sinWkTkT?2= W?sinkk?2=?W,k = 00,otherwise?Problem 2.23 :Lets denote : y(t) = fk(t)fj(t).Then :?fk(t)fj(t)dt =?y(t)dt = Y (f)|f=0where Y (f) is the Fourier transform of y(t). Since : y(t) = fk(t)fj(t) Y (f) = Fk(f)Fj(f).But :Fk(f) =?fk(

26、t)ej2ftdt =12Wej2fk/2WThen :Y (f) = Fk(f) Fj(f) =?Fk(a) Fj(f a)daand at f = 0 :Y (f)|f=0=?Fk(a) Fj(a)da=?12W?2?ej2a(kj)/2Wda=?1/2W,k = j0,k ?= j?Problem 2.24 :Beq=1G?0|H(f)|2dfFor the filter shown in Fig. P2-12 we have G = 1 andBeq=?0|H(f)|2df = BFor the lowpass filter shown in Fig. P2-16 we haveH(f) =11 + j2fRC |H(f)|2=11 + (2fRC)214So G = 1 andBeq=?0|H(f)|2df=12?|H(f)|2df=14RCwhere the last integral is evaluated in the same way as in problem P-2.9 .15

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报