ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:164.26KB ,
资源ID:9694    下载:注册后免费下载
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenkunet.com/d-9694.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(RBF神经网络用于系统的预测最优控制.pdf)为本站会员(李静文)主动上传,文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文库网(发送邮件至13560552955@163.com或直接QQ联系客服),我们立即给予删除!

RBF神经网络用于系统的预测最优控制.pdf

1、12 2 Fn Vol. 12 No. 21999 M6 JOU RNAL OF PETROCHEM ICAL U NIVERSIT IES Jun. 1999RBF * “dK e史国栋 王其红 薛国新 徐 燕( F, 213016)K 1 为了实现系统的预测最优化控制, 问题的关键是如何准确而迅速地对未来一段时间内的系统状态进行预测,然后利用此预测结果及优化指标来控制有关系统变量, 人们对此进行了许多研究,但尚有其不足之处b为此,提出压缩预测变量集规模等办法来增加 RBF 神经网络有效预测时间长度, 在此基础上利用稳态最优解和优化指标来控制有关量b此方法被用于某化工过程, 结果能使系统运行

2、更为平稳,并使有关量达到了预测的优化指标b1oM RBF 神经网络; 预测; 稳态; 最优控制ms | TP273 M ,K eTB5 e m , s jbV,YVK e 3 , V -4/ P1 qr V ?,V7 |A6rmb LCK e,1oB b1.d ZE, MYE =ME, P * ZE pz a 7 s 1 1b * PBP * , HW , OJ lb7RBF* 7 s j 1, 4, 5byN|RBF * Vb H, “ 1 1 , y “,t4 * y ZE 2bNZE 1 ab y, “d, VCv8b - T M“d1o Y1BHWV ?8C, HY| HWb 6, t

3、 Z4M “d # z9 NVT“d1o 3YbyN,收稿日期: 1999- 03- 30第一作者:男, 43岁,教授b 5 ,“dsZF, t T l M 1 vSM,7 6Bt 51VM HW T M 3 AYb P eM CC,9Y * r HWbN,4 P 9 T!RBF “,i “d s ,YV K e r “b1 RBF 预测神经网络 m yj, 1 j m f,y= (y1, , , ym)T V Um bW, !X “( x(k),y(k) | 1 k Kbx(k) I Rnbx I Rn, VRBF TbB f/, | H n H K, HRBF Tyj = EHh= 1wj

4、h exp - (x - xh)2R2h 1 j m(1) TMRBF * , x s ;H ; Rh, x h ; wjh(1 h H , 1 j m) W bI n“dK e5,| s : u1, , uRM1, , MSbB R 1 p ,= S 5 (11 p b |B HW3, 2QW HWt1= t- (Q- 1)$t, t2 = t-(Q- 2)$t, , , tQ = t, tQ+ 1 = t+ $t, , ,t2Q= t+ Q$tF,u(q)rM(q)SsYV UurMS HW tqb 7x = (u(1)1 , , u( 1)R ; M( 1)1 , , M(1)S ; ,

5、; u( Q)1 , ,u(Q)R ; M(Q)1 , , M(Q)S )T ( 2)y = (M( Q+ 1)1 , , M( 2Q)1 ; ,; M( Q+ 1)S , , M( 2Q)S )T( 3) n= (R+ S)Q, m= QSb , (2) Tx(1) T (3) Tyb 1 V“ b RBF * r,A | M b2 预测最优控制方法 L=“dK e5,4/n bRBF * M “,c“d M , O *t ?8C ? o pM b“, Vvvhl5? bi O V|5 e5s 7b5, eM T1,QV T “d M , M 1 eM N1, PT eM yT,AY9 rb

6、 M , | ,7 | BHW F s,“, V9FTr HWb| tF f |9f ,“, L - Y v, L=5? pMBb| 1 p |1M , 1 p“d M $T % 1Hqby s5, p KbiNK “S, e TM b 5 c dLZFK5b BT /: T T Hqf i(x 1, , xn, A1, , AS) = 0 1 i nUj(x 1, , xn, A1, , AS) = 0 1 j m(4), A1, , AS Q THqBFMb Hq/ “Sf m inx1, , xnJ(x 1, , xn) (5)YZE p K5x(0)1 , x( 0)n ; A(0)1

7、 , , A(0)Sb P TM A1, ASrA(0)1 , , A(0)S HW$T(0),1PID eb3 应用实例 K e, ZFB ,/ T:Mij (xij, Vj, Tj) = Axij - Dj = 01 i c 1 j N (6)Sj(xij, Vj , Tj) = Eci= 1Kijxij - 1 = 01 i N (7)Hj(xij , Vj, Tj ) = (hVj+ 1- hLj ) Vj+ 1- (hVj - hLj )( Vj + Gj ) - (hLj - hLj- 1)Lj- 1+(hFj - hLj )Fj - Qj = 0 2 j N - 1(8), c8

8、“Fs , iFs ; jV U ) , N 9) ; Fj) ; Vj ) M ; Lj )AM ; Tj ); xij )AMF; K ij ; QjWF b(6) TcNZT,(7) T(8) TNZ T,yN, ) (r H Z9 (c+ 2)Nb M 5 82 Fn 12 )FsAM ixij, cN, )Tj , N,# ) M Vj ,9Nb# M 9 ( c+ 2) NbyNM Z Mb ZF VbI nt F 7#Q F 7 K ebN f/,1PID e 1 # / T:m F , 1, D 7,t D7, F 7 D 7, F 7 D 7b V HWM? p /:Fin

9、= Fin(t) ( 9)T in = T in(t) (10)| sYZ 7 ) b B sY:t(1)Ft(1)Tb |$3( 0) = 14 m in(t( 1)F , t(1)T ) (11)N HWT P TM K HW e_ PID e b_ | PK eZE q5 qT 1 bnV1bV1 Vn, PZE e,t a F 7 q991545% 10%b 6 V A, e“db y“d KA1HqBb4 结 论K e B5,4 %ZEb|RBF *“d M “,i4| M HWV F sT,4 r,41 P“d sK e TM ZE, ?4 l q,7 O9 ? P“dbV1 q1

10、 Table 1 Comparasion between the product ratest/ min航煤产率, %优控前值 优控后值轻石脑产率, %优控前值 优控后值重石脑产率, %优控前值 优控后值15 25. 29 26. 75 11. 62 12. 74 10. 05 10. 7130 25. 00 26. 85 11. 80 12. 81 10. 04 10. 7545 24. 15 26. 65 12. 08 12. 87 9. 90 10. 7160 25. 50 26. 63 11. 66 12. 90 9. 74 10. 7975 24. 00 26. 65 12. 15

11、12. 92 10. 08 10. 8290 25. 20 26. 68 11. 89 12. 86 9. 95 10. 90105 24. 75 27. 05 11. 74 12. 81 10. 22 10. 86120 24. 63 26. 95 11. 60 12. 80 9. 91 10. 88 ID1 Foster W R, Collopy F, Ungar L H. Neural network forecasting of short noisy time series. Computers Chem.Enging. , 1992, 16( 4) : 293 2972 M ich

12、ael L T, M ark A K. M odeling chemical processes using prior knowledge and neural netw orks. AICHE Journal ofprocess System Engineering, 1994, 40( 8) : 496 5023 符曦. 系统最优化及控制.北京: 机械工业出版社, 1995. 459 4854 Ruan R R, Almer S, Zhang J. Prediction of dough rheological properties using neural networks. Cere

13、al Chemistry,83 2 NS. RBF * “dK e1995, 72( 3) : 7 135 Daviod D Z. Neural networks system design methodology. PeKing: Tsinghua University Press. , 1996. 1 7Application of RBF- Neural Network Combined w ith the Optimal StableSolution for the Predicative Optimum Control of SystemShi Guodong Wang Qihong

14、 Xue Guoxing Xu Yan(Jiangsu Institute of Petrochemical Technology, Jiangsu Changzhou 213016)Abstract To realize the predicative optimum control of a system, the key of t he problem is how to predicate the states oft he system in the coming time space accurately and quickly and then use the predicate

15、d results and the opt imal indexes tocontrol the related system variables. A lots of study w orks in this aspect have been done. But there are still many short-comings. This paper proposed a method by which the scale of the predicted variables set could be reduced. By combiningt his method w ith oth

16、er methods, the valid predication time length of t he RBF- neural network was increased. Based ont his, the optimum stable state of t he system and the optimum indexes were used to control related variables. The met hodspresented in this paper have been applied to the simulation of a chemical proces

17、s. The results show ed t hat t he system couldreach t he indexes as well as run in a stabler state.Keywords RBF- neural network; Predication; Stable state; Opt imum( Ed. : ZW. W. )(上接第80页)Self- T urning PID Controller Based on theRealization of Neural NetworksLi Chunxiang Zhong Biliang(Guangdong Col

18、lege of Petrochemical Technology, Guangdong Maoming 525000)Mao Zhongyuan(Department Automation, South China University of Technology, Guangdong Guangzhou 510641)Abstract A self - adaptive PID controller based on neural network is introduced in this paper. It has not only thelearning ability and the

19、adaptability, but also the self- adjusting factor function. Digital simulation and experiment resultsshow that this new controller can improve the dynamic performance of temperature regulation system and robustness.Keywords Neural network; Self- adaptive; PID control; Stabilizat ion( Ed. : ZW. W. )84 Fn 12

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报