收藏 分享(赏)

自激式开关电源设计.doc

上传人:Wallisgabriel 文档编号:21733453 上传时间:2024-04-15 格式:DOC 页数:48 大小:1.57MB
下载 相关 举报
自激式开关电源设计.doc_第1页
第1页 / 共48页
自激式开关电源设计.doc_第2页
第2页 / 共48页
自激式开关电源设计.doc_第3页
第3页 / 共48页
自激式开关电源设计.doc_第4页
第4页 / 共48页
自激式开关电源设计.doc_第5页
第5页 / 共48页
亲,该文档总共48页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、洛阳理工学院毕业设计(论文)自激式开关电源设计摘 要随着电力电子技术的发展和新型功率元器件的不断出现,开关电源技术得到了飞速的发展,在计算机、通讯、电力、家用电器、航空航天等领域得到广泛应用,取得了显著的成果。论文主要完成的内容有:(1)根据设计需要选择开关电源电路;(2)设计输入整流滤波电路,并确定相关器件参数;(3)设计输出电路,并确定相关器件参数;(4)设计电压反馈电路;(5)通过实验和计算对设计中的数据进行验证。本论文对开关电源的滤波、整流、反馈电路等分别作了细致的研究工作,通过实验和计算,掌握了开关电源设计的核心技术,并对设计过程进行了详尽的阐述。关键词: 开关电源,电力电子技术,整

2、流,自激式振荡Self-excited Switching PowerABSTRACTWith the development of the electronic technology and the emerging of new power components, switching power supply has been widely used in computer, communications, electricity, home appliances and aerospace fields, achieving remarkable results. The main co

3、ntent of the papers are: (1)Choose switching power supply circuit based on the requirement; (2)Design input rectifier filter circuit and identify the relevant device parameters; (3)Design rectifier output and establish the relevant device parameters; (4)Design voltage feedback circuit; (5)Validate d

4、ata of the designing by adoption of experimental and computations.In the thesis , the switching power supply filtering, rectifier and the feedback circuit are studied in details. The main technology of designing switching power supply is obtained by experiments and calculations. The design process i

5、s specified also.KEY WORDS: Switching Power Supply, Electronic technology ,Bridge Rectifier, Self-excitation12目录前言1第1章 开关电源基础技术21.1 开关电源概述21.1.1 开关电源的工作原理21.1.2 开关电源的组成31.1.3 开关电源的特点41.1.4 开关电源的主要技术指标41.2 开关电源的分类51.3 开关电源设计中存在的问题与未来发展111.3.1 开关电源设计中存在的问题111.3.2 开关电源的发展趋势12第2章 自激式开关电源元器件的选用132.1 开关晶体

6、管142.1.1 电力场效应管MOSFET142.1.2 绝缘栅双极晶体管IGBT162.2 二极管172.2.1 开关二极管172.2.2 稳压二极管172.2.3快速恢复二极管及超快速恢复二极管182.3 光电耦合器192.4 器件TL431222.5 自动恢复开关232.6 热敏电阻24第3章 自激式开关电源的设计263.1 总体设计263.2 电路模块设计273.2.1 启动与滤波电路273.2.2 DC/AC变换电路283.2.3 反馈与保护电路293.2.4 输出转换电路303.3 开关电源设计相关参数计算31结论32谢 辞33参考文献34附录35外文资料翻译36前言电源power

7、 supply; power source 向电子设备提供功率的装置。把其他形式的能转换成电能的装置叫做电源。发电机能把机械能转换成电能,干电池能把化学能转换成电能.发电机.电池本身并不带电,它的两极分别有正负电荷,由正负电荷产生电压(电流是电荷在电压的作用下定向移动而形成的),电荷导体里本来就有,要产生电流只需要加上电压即可,当电池两极接上导体时为了产生电流而把正负电荷释放出去,当电荷散尽时,也就荷尽流(压)消了.干电池等叫做电源。通过变压器和整流器,把交流电变成直流电的装置叫做整流电源。能提供信号的电子设备叫做信号源。晶体三极管能把前面送来的信号加以放大,又把放大了的信号传送到后面的电路中

8、去。晶体三极管对后面的电路来说,也可以看做是信号源。整流电源、信号源有时也叫做电源。开关电源技术是一门运用半导体功率器件实现电能的高频率变换,将粗电变换成精电,以满足供电质量要求的技术。由于在开关电源中半导体功率器件工作在高频开关方式,因此它具有高效率,高功率密度,高可靠性。由于开关电源的突出优点,开关电源更替线性电源是发展的必然趋势。近年来,由于微型计算机的普及,通信行业的迅猛发展,推动了开关电源技术的进步和产业的迅速发展。开关电源具有功耗小、功率高、稳压范围宽、体积小(重量轻)等突出优点,在通讯设备、数控设备、仪器仪表、影音设备、家用电器等电子电路中得到广泛应用。由于价格低廉,电路简单,目

9、前仍有较多的电子设备采用自激式开关电源完成多种电压输出,包括升/降电压、改变极性等功能。自激式开关电源触发开关管的信号由自激振荡产生,在一定程度上简化了电路。基本的自激式开关电源是不隔离式的,输入电压经开关管控制后构成输出电压,输入与输出共有负极为公共端。采用不隔离的开关电源的用电设备当由市电整流输出时,用电设备可能接有交流高压的输入,因此其应用条件和范围有所限制。 第1章 开关电源基础技术1.1 开关电源概述1.1.1 开关电源的工作原理开关电源的工作原理可以用图1-1进行说明。图中输入的直流不稳定电压Ui经开关S加至输出端,S为受控开关,是一个受开关脉冲控制的开关调整管,若使开关S按要求改

10、变导通或断开时间,就能把输入的直流电压Ui变成矩形脉冲电压。这个脉冲电压经滤波电路进行平滑滤波后就可得到稳定的直流输出电压Uo。 (a) 电路图;(b) 波形图图1-1开关电源的工作原理为方便分析开关电源电路,定义脉冲占空比如下: D= (1-1)式中,T表示开关S的开关重复周期;TON表示开关S在一个开关周期中的导通时间。开关电源直流输出电压Uo与输入电压Ui之间有如下关系: Uo=UiD (1-2)由式(1-1)和式(1-2)可以看出,若开关周期T一定,改变开关S的导通时间TON,即可改变脉冲占空比D,从而达到调节输出电压的目的。T不变,只改变TON来实现占空比调节的稳压方式叫做脉冲宽度调

11、制(PWM)。由于PWM式的开关频率固定的,输出滤波电路比较容易设计,易实现最优化,因此PWM式开关电源用得比较多。若保持TON不变,利用改变开关频率=1/T实现脉冲占空比调节,从而实现输出直流电压Uo稳压的方法,称做脉冲频率调节(PFM)。由于该方式的开关频率不固定,因此输出滤波电路的设计不易实现最优化。即改变TON,又改变T,实现脉冲占空比调节的稳压方式叫做脉冲调频调宽方式。在各种开关电源中,以上三种脉冲占空比调节的稳压方式均有应用。 1.1.2 开关电源的组成开关电源的组成如图1-2所示。其中DC/DC变换器用以进行功率交换,它是开关电源的核心部分;驱动器是开关信号的放大部分,对来自信号

12、源的开关信号进行放大和整形,以适应开关管的驱动要求;信号源产生控制信号,该信号由他激或自激电路产生,可以是PWM信号、PFM信号或其他信号;比较放大器对给定信号和输出反馈信号进行比较运算,控制开关信号的幅值、频率、波形等,通过驱动器控制开关器件的占空比,以达到稳定输出电压值的目的。除此之外,开关电源还有辅助电路,包括启动、过流过压保护、输入滤波、输出采样、功能指示等电路。图1-2 开关电源的基本组成DC/DC变换器有多种电路形式,其中控制波形为方波的PWM变换器以及工作波形为准正弦波的谐振变换器应用较为普通。开关电源与线性电源相比,其输入的瞬态变换比较多的表现在输出端,在提高开关频率的同时,由

13、于比较放大器的频率特性得到改善,开关电源的瞬态响应指标也能得到改善。开关电源的负载变换瞬态响应主要由输出端LC滤波器的特性决定,所以可以通过提高开关频率、降低输出滤波器LC的方法来改善瞬态响应特性。1.1.3 开关电源的特点开关电源具有如下特点:(1)效率高。开关电源的功率开关调整管工作在开关状态,所以调整管的功耗小,效率高,一般在80%90%,高的可达90%以上。(2)重量轻。由于开关电源省掉了笨重的电源变压器,节省了大量的漆包线和硅钢片,从而使重量只有同容量线性电源的1/5,体积也大大缩小了。(3)稳压范围宽。开关电源的交流输入电压在90270V内变化时,输出电压的变化在2%以下。合理设计

14、开关电源电路,还可使稳压范围更宽,并保证开关电源的高效率。(4)安全可靠。在开关电源中,由于可以方便的设置各种形式的保护电路,因此当电源负载出现故障时,能自动切断电源,保障其功能可靠。(5)功耗小。由于开关电源的工作频率高,一般在20kHz以上,因此滤波元件的数值可以大大减小,从而减小功耗;特别是,由于功率开关管工作在开关状态,损耗小,不需要采用大面积散热器,电源温升低,周围元件不致因长期工作在高温环境而损坏,因此采用开关电源可以提高整机的可靠性和稳定性。1.1.4 开关电源的主要技术指标开关电源有以下主要技术指标。(1)输入电压变化范围:当稳压电源的输入电压发生变化时,使输出电压保持不变的输

15、入电压的变化范围。这个范围越宽,表示电源适应外界电压变化的能力越强,电源使用范围越宽。它和电源的误差放大、反馈调节电路的增益以及占空比调节范围有关。目前开关电源的输入电压变化范围已达到90270V,可以省去许多电器中的110V/220V转换开关。(2)输出内阻Ro:输出电压的变化量Uo与输出电流的变化量Io的比值。这个比值越小,表示电源输出电压随负载电流的变化越小,稳定性越好。(3)效率:电源输出功率Po与输入功率Pi的比值。这个比值越高,开关电源的体积越小,同时可靠性也越高。目前开关电源的效率可达到90%以上。(4)输出纹波电压:由于开关电源的稳压过程是一个不断反馈调节的过程,因此在输出的直

16、流电压Uo上会出现一个叠加的波动的纹波电压,即输出纹波电压。这个电压值越小,表示电源的输出性能越好。这个参数的表示有两种方法:一是输出纹波电压有效值;二是输出纹波电压的峰峰值Upp。(5)输出电压调节范围:由于电源的输出电压只和基准电压与输出取样电路的元器件参数有关,因此,输出电压调节范围反应在线性电源上时稳压调整管集电极电流的变化范围。(6)输出电压稳定性:输出电压随负载变化而变化的特性,这个变化量越小越好。它主要和反馈调节回路的增益及频响特性有关。反馈调节回路增益越高,基准电压UE越稳定,输出电压Uo的稳定性越好。(7)输出功率Po:电源能输出给负载的最大功率,它和负载功率有关。为了保证电

17、源安全,要求输出功率有20%50%的裕量。1.2 开关电源的分类现在,电子技术和应用迅速的发展,对电子仪器和设备的要求是:在性能上,更加安全可靠;在功能上,不断地增加;在使用上,自动化程度要越来越高;在体积上,要日趋小型化。这使采用具有更多优点的开关稳压电源就显的更加重要了。所以,开关稳压电源在计算机、通信、航天、彩色电视机等方面都得到了越来越广泛的应用,发挥了巨大的作用,这大大促进了开关稳压电源的发展,从事这方面的研究和生产人员也越来越多。图1-3给出了各种类型的开关稳压电源的原理图。常见的开关稳压电源分类方法有已下几种:1按激励方式划分(1)它激式它激式开关电源必须有一个振荡器,用以产生开

18、关脉冲来控制开关管,使开关电源工作,输出直流电压。电路中专设激励信号产生的振荡器,电路形式如图1-3(c)所示。(2)自激式自激式开关电源利用电源电路中的开关晶体管和高频脉冲变压器构成正反馈电路,来完成自激振荡,使开关电源输出直流电压。在显示设备的PWM式开关电源中,自激振荡频率同步于行频脉冲,即使在行扫描电路发生故障时,电源电路仍能维持自激振荡而有直流输出电压。开关管兼作振荡器中的振荡管,电路形式如图1-3(d)所示2按调制方式划分(1)脉冲调制型振荡频率保持不变,通过改变脉冲宽度来改变和调节输出电压的大小,有时通过取样电路,耦合电路等构成反馈闭环回路,来稳定输出电压的幅度。(2)频率调整型

19、频率调整型占空比保持不变,通过改变振荡器的振荡频率来调节和稳定输出电压的幅度。(3)混合型 通过调节导通时间的振荡频率来完成调节和稳定输出电压幅度的目的。3按开关管电流的工作方式划分(1)开关型用开关晶体管把直流变成高频标准方式,电路形式类似于他激式。(2)谐振型开关晶体管与LC谐振回路将直流变成标准的正弦波,电路形式类似于自激式。4按开关晶体管的类型划分(1)晶体管型采用晶体管作为开关管,电路形式如图1-3(b)所示。(2)可控硅型采用可控硅作为开关管,这种电路的特点是直接输交流电,不需要一次整流部分,其电路形式如图1-3(g)所示。5按储能电感与负载的连接方式划分(1)串联型储能电感串联在

20、输入与输出电压之间,电路形式如图1-3(a)所示。(2)并联型 储能电感并联在输入与输出电压之间,电路形式如图1-3(b)所示。6按晶体管的连接方式划分(1)单端式仅使用一个晶体管作为电路中的开关管,这种电路的特点是价格低,电路结构简单,但输出功率不能提高,其电路形式如图1-3(a)(b)(c)。(2)推挽式使用两个开关晶体管,将其连接成推挽功率放大器形式,这种电路的特点是开关变压器必须是有中心抽头,电路形式如图1-3(I)所示(3)半桥式使用两个开关晶体管,将其连接成半桥的形式,它的特点是适应于输入电压较高的场合,其电路形式如图1-3(m)所示。(4)全桥式使用四个开关晶体管,将其连接成全桥

21、的形式,它的特点是输出功率较大,其电路形式如图1-3(h)所示。7按输入与输出电压大小划分(1)升压式输出电压比输入电压高,实际就是并联型开关稳压电源。(2)降压式输出电压比输入电压低,实际就是串联型开关稳压电源。8按工作方式划分(1)可控整流型所谓可控整流型开关稳压电源,是指采用可控硅整流元件作为调整开关管,可由交流市电电网直接供电,在可工作的半波内,截去正弦曲线的前一部分,这一部分所占角度称为截止角,导通的正弦曲线后一部分称为导通角,依靠调节导通角的大小,可达到调整输出电压和稳定输出电压的目的,其电路形式如图1-3(f)所示。(2)斩波型斩波型开关稳压电源是指直流供电,输入直流电压加到开关

22、电路上,在开关电路的输出端得到单相的脉动直流,经过滤波得到与输入电压不同的稳定的直流输出电压。电路还从输出电压取样,经过比较、放大,控制脉冲发生电路产生的脉冲信号,用以控制调整开关的导通时间和截止时间的长短和开关的工作频率,最后达到稳定输出电压的目的,电路的过压保护电路也是依据这一部分所提供的取样信号来进行工作的,斩波型电路形式如图1-3(e)所示。(3)隔离型这种形式的开关电源是在输入回路与逆变电路之间,经过高频变压器,利用磁场的变化实现能量传递,没有电流间的之间流通,隔离型开关稳压电源采用直流供电,经过开关电路将直流电变成频率很高的交流电,再经变压器隔离、变压,然后经整流器整流,最后就可以

23、得到新的、极性和数值各不相同的多组直流输出电压。电路从输出端取样,经放大后反馈至开关控制端,控制驱动电路的工作,最后达到稳定输出电压的目的,这种形式的开关稳压电源在实际中应用的最为广泛。9按电路结构划分(1)散件式整个开关稳压电源电路都是采用分立式元器件组成的,它的电路形式较为复杂,可靠性较差。(2)集成电路式整个开关稳压电源电路或电路的一部分是由集成电路组成的,这种集成电路通常为厚膜电路。有的厚膜集成电路包括开关晶体管,有的则不包括开关晶体管。这种电源的特点是电路结构简单、调试方便、可靠性高。彩色电视机中常采用这种开关电源。10按电路的输出取样样式分类(1)直接输出取样开关电源直接输出取样开

24、关电源在光电耦合器尚未应用时,主要在串联开关电源上使用;在光电耦合器应用后,开始在变压器耦合并联开关电源上使用。(2)间接输出取样开关电源间接输出取样方式输出电压的变化须经开关变压器磁耦合才能反映到取样绕组两端,所以稳压速度低,并且这种开关电源不能空载检修,检修时须在输出端接替代负载。以上五花八门的开关稳压电源都是站在不同的角度,已开关稳压电源不同的特点命名的。图1-3示出开关稳压电源的原理框图。尽管电路的激励方法、输出直流电压的调节手段、储能电感的连接方式、开关管的器件种类以及串并联结构各不相同,但是它们最后总可以归结为串联型开关稳压电源和并联型开关稳压电源这两大类。图1-3 各种开关电源原

25、理图(a)-(c)图1-3 各种开关电源原理图(d)-(n)1.3 开关电源设计中存在的问题与未来发展1.3.1 开关电源设计中存在的问题随着半导体技术和微电技术的高速发展,集成度高、功率强的大规模的集成电路的不断出现,使得电子设备的体积在不断的缩小,重量在不断的减轻,所以从事这方面的研究和生产的人们对开关稳压电源中开关变压器还感到不是十分的理想,他们正致力于研制出效率更高、体积更小、重量更轻的开关变压器或者通过别的途径来取代开关变压器,使之能过满足电子仪器和设备微小型化的需要。这是从事开关稳压电源研制的科技人员目前正在克服的第一困难。开关稳压电源的效率与开关管的变换速度成正比的,并且开关稳压

26、电源中采用了开关变压器以后,才能使之一组输入得到极性、大小各不相同的多组输出,要进一步提高开关稳压电源的效率,就必须提高电源的工作频率。但是,当频率提高以后,对整个电路中的元器件又有了新的要求,高频电容、开关管、开关变压器、储能电感等都会出现新的问题,近一步研制适应高频率工作的有关电路元器件,是从事开关稳压电源研制科技人员要解决的第二困难。工作在线性状态的线性稳压电源,具有稳压和滤波的双重作用,因而串联线性稳压电源不产生开关干扰,且纹波电压输出较小。但是,开关稳压电源的开关管工作在开关状态,其交变电压和电流会通过电路中的元器件产生较强的尖峰干扰和谐振干扰,这些干扰就会污染市电电网,影响临近的电

27、子仪器及设备的正常工作。随着开关稳压电源电路和抑制干扰措施的不断改进,开关稳压电源的这一缺点得到进一步克服,可以达到不妨碍一般的电子仪器、设备和家用电器正常工作的程度。但是,在一些精密电子仪器中,由于开关稳压电源的这一缺点,却使它不能得到使用。所以,克服稳压电源的这一缺点,进一步提高它的使用范围,是从事开关稳压电源研制科技人员要解决的第三个问题。客观上讲,开关电源的发展是非常快的,这时因为它具有其他电源所无法比拟的优势。材料之新、用途之广,是它快速发展的主要动力。但是,它离人们的要求、应用的价值还差得很远,体积、重量、效率、抗干扰能力、电磁兼容性以及使用的安全性都不能说是十分完美。目前要解决的

28、问题有:(1) 器件问题。电源控制集成度不高,这就影响了电源的稳定性和可靠性,同时对电源的体积和效率来说也是一个大问题。(2) 材料问题。开关电源使用的磁芯、电解电容及整流二极管灯都很笨重,也是耗能的主要根源。(3) 能源变换问题。按照习惯,变换有这样几种形式:AC/DC变换、DC/AC变换以及DC/DC变换等。实现这些变换都是以频率为基础,以改变电压为目的,工艺复杂,控制难度大,始终难以形成大规模生产。(4) 软件问题。开关电源的软件开发目前只是刚刚起步,例如软开关,虽然它的损耗低,但难以实现高频化和小型化。要做到“软开关”并实行程序化,更是有一定的困难。要真正做到功率转换、功率因数改善、全

29、程自动检测控制实现软件操作,目前还存在很大的差距。(5) 生产工艺问题。往往在试验室中能达到相关的技术标准,但在生产上会出现各种问题。这些问题大多是焊接问题和元器件技术性能问题,还有生产工艺上的检测、老化、粘结、环境等方面的因素。1.3.2 开关电源的发展趋势未来的开关电源像一只茶杯的盖子:它的工作频高达210MHz,效率达到95%,功率密度为36W/cm2,功率因数高达0.99,长期使用完好,寿命在80000h以上。这就是开关电源的发展趋势。所谓高标准就是对未来开关电源的挑战:第一,能不能全面通容电磁兼容性的各项技术标准;第二,在企业里能不能大规模地、稳定地生产,或快捷地进行单项生产;第三,

30、按照人们的需要,能不能组装或拼装大容量、高效率的电源;第四,能否使新的开关电源具有比运行中的电气额定值更高的功率因数、更低的输出电压(13V)、更大的输出电流(数百安);第五,能不能实现更小的电源模块。第2章 自激式开关电源元器件的选用无论那一种变换器,用的是那一种结构形式的开关电源,所使用的元器件都是开关晶体管、电阻、电容、电感及磁性材料等。选用好元器件,是决定开关电源质量的关键。往往设计的开关电源在试验室中式成功的,一到生产线上进行规模生产时,就会出现各种问题。当然,有设计方面的,有工艺方面的,还有焊接方面的,但多数是元器件选用问题。元器件本身质量的差异是影响开关电源质量的一个重要原因。开

31、关器件的特征:同处理信息的电子器件相比,开关电源的电子器件具有以下特征:(1) 能处理电功率的大小,即承受电压和电流的能力是开关器件最重要的参数,其处理电功率的能力小至毫瓦级,大至兆瓦级,大多远大于处理信息的电子器件。(2) 开关器件一般都工作在开关状态,导通时(通态)阻抗很小,接近于短路,管压降接近于零,电流由外电路决定;阻断时阻抗很大,接近于断路,电流几乎为零,管子两端电压由外电路决定。(3) 开关器件的动态特性也是很重要的方面,有些时候甚至上升为第一位的重要问题。作电路分析时,为简单起见往往用理想开关来代替实际开关。(4) 电路中的开关器件往往需要由信息电子电路来控制。在主电路和控制电路

32、之间,需要一定的中间电路对控制电路的信号进行放大,这就是开关器件的驱动电路。(5) 为保证不致于因损耗散发的热量导致开关器件温度过高而损坏,不仅在开关器件封装上讲究散热设计,在其工作时一般都要安装散热器。导通时,器件上有一定的通态压降;形成通态损耗阻断时,开关器件上有微小的断态漏电流流过;形成断态损耗时,在开关器件开通或关断的转换过程中产生开通损耗和关断损耗,总称开关损耗。对某些器件来讲,驱动电路向其注入的功率也是造成开关器件发热的原因之一。2.1 开关晶体管2.1.1 电力场效应管MOSFETMOSFET分P沟道耗尽型、P沟道增强型、N沟道耗尽型和N沟道增强型4种类型。增强型MOSFET具有

33、应用方便的“常闭”特性(即驱动信号为零时,输出电流等于零)。在开关电源中,用作开关功率管的MOSFET几乎全部都是N沟道增强型器件。这时因为MOSFET是一种依靠多数载流子工作的单极型器件,不存在二次击穿和少数载流子的储存时间问题,所以具有较大的安全工作区、良好的散热稳定性和非常快的开关速度。MOSFET在大功率开关电源中用作开关,比双极型功率晶体管具有明显的优势。所有类型的有源功率因数校正器都是为驱动功率MOSFET而设计的,所以说,用作开关的MOSFET是任何双极型功率晶体管所不能替代的。(a) N沟道内部结构断面示意图; (b) 电气图形符号图2-1 电力MOSFET的结构和电气图形符号

34、1. MOSFET的主要特点MOSFET是一种依靠多数载流子工作的典型场控制器件。由于它没有少数载流子的存储效应,所以它适用于100200MHz的高频场合,从而可以采用小型化和超小型化的磁性元件和电容器。MOSFET具有负的电流温度系数,可以避免热不稳定性和二次击穿,适合在大功率和大电流条件下应用。MOSFET从驱动模式上来分,属于电压控制器件,驱动电路设计比较简单,驱动功率甚微,在启动或稳定工作条件下的峰值电流要比采用双极型功率晶体管小得多。MOSFET中大多数集成有阻尼二极管,而双极型功率晶体管中大多没有内装阻尼二极管。MOSFET对系数的可靠性与安全性的影响并不像双极型晶体管那样重要。M

35、OSFET的主要缺点是导通电阻(RDS(ON))较大,而且具有正温度系数,用在大电流开关状态时,导通损耗较大,开启门限电压VGS(th)较高(一般为24V),要求驱动变压器绕组的匝数比采用双极型晶体管多1倍以上。2. MOSFET的驱动电路MOSFET的驱动电路如图2-2和图2-3所示。图2-2 加速TR关断驱动电路在图2-2中,NS为脉冲变压器次级驱动绕组,R是MOSFET的栅极限流电阻。齐纳二极管DW1,DW2反向串接在一起,用于对VT的栅漏极进行钳位,放置驱动电压VGS过高而使VT几串。R的阻值一般为60200。尽管MOSFET的输入阻抗很高,但仍会产生充电电流。R值小,则开关速度高,只

36、要栅极的驱动电压一撤销,就会立刻截止。图2-3所示是加速漏极电流跌落时间、有利于零功率控制的电路。当MOSFET的栅极驱动电压突然降到门限电压时,MOSFET由导通突变为截止,三极管BC557加速了ID的跌落,为MOSFET起到加速作用。图2-3 功率驱动电路2.1.2 绝缘栅双极晶体管IGBT绝缘栅双极型晶体管(IGBT)是一种大电流密度、高电压激励的场控制器件,是高压、高速新型大功率器件。它的耐压能力为6001800V,电流容量为100400A,关断时间低至0.2s,在开关电源中作功率开关用,具有MOSFET与之不可比拟的优点。IGBT的主要特点是: 电流密度大,是MOSFET的10倍以上

37、。 输入阻抗高,栅极驱动功率小,驱动电路简单。 低导通电阻。IGBT的导通电阻只有MOSFET的10%。 击穿电压高,安全工作区大,在受到较大瞬态功率冲击时不会损坏。 开关速度快,关断时间短。耐压为1kV的IGBT的关断时间为1.2s,600V的产品的关断时间仅为0.2s。图2-4 IGBT的图形符号 上述这些特征克服了MOSFET的一些缺陷,即在大功率、高电压、大电流条件下工作时导通电阻大、器件发热严重、输出功率下降、电源效率低下的弊病。有关IGBT的图形符号见图2-4。2.2 二极管二极管在电子电路中用得较多,功能各异。从结构上来分,有点接触型和面接触型二极管。面接触型二极管的工作电流比较

38、大,发热比较厉害,它的最高工作温度不允许超过100。按照功能来分,有快速恢复及超快速恢复二极管,有整流二极管、稳压二极管及开关二极管等。以下介绍几种二极管的特点及检测方法。2.2.1 开关二极管开关管用在高速运行的电子电路中,起信号传输作用,在模拟电路中起作钳位抑制作用。高速开关硅二极管是高频开关电源中的一个主要器件,这种二极管具有良好的高频开关特性。它的反向恢复时间trr只有几纳秒,而且体积小,价格低。在开关电源的过压保护、反馈控制系统中常用到硅二极管,如1N4148、1N4448。硅二极管的主要技术指标是:(1) 最高反向工作电压VRM和反向击穿电压VBR:这两个参数越大越好。(2) 最大

39、管压降VFM:小于0.8V。(3) 最大工作电流Id:大于150mA。(4) 反向恢复时间trr:小于10ns。2.2.2 稳压二极管稳压二极管又叫齐纳二极管(Zener Diod),具有单向导电性,它工作在电压反向击穿状态。当反向电压达到并超过稳定电压时,反向电流突然增大,而二极管两端的电压恒定,这就叫做稳压。它在电子电路中用作过压保护、电平转换,也可用来提供基准电压。1稳压二极管的分类稳压二极管分低压和高压两种。稳压值低于40V的叫做低压稳压二极管;高于200V的叫做高压稳压二极管。现在市面上从2.4V到200V,各种型号规格齐全。稳压管的直径一般只有2mm,长度为4mm。它的稳压性能好,

40、体积小,价格便宜。稳压二极管从材料上分为N型和P型两种。选用稳压二极管的原则是:第一,注意稳定电压的标称值;第二,注意电压的温度系数。2稳压二极管的用途稳压二极管具有以下几个作用:第一,对漏极和源极经行钳位保护;第二,起到加速开关管导通的作用;第三,在开关电源中常用高压稳压二极管代替瞬态电压抑制器TVS对初级回路产生的尖峰电压进行钳位;第四,在晶体管反馈回路中,常常在晶体管的发射极串联一只稳压管作电压负反馈,提高放大电路的稳定性。3稳压二极管的主要参数稳压二极管的主要参数如下: 稳定电压VZ。设计人员根据需要选用。 稳定电流IE。 温度系数。温度越高,稳压误差越大。2.2.3快速恢复二极管及超

41、快速恢复二极管快速恢复二极管(Fast Recovery Diod)和超快速恢复二极管(Superfast Recovery Diod,SRD)时很多电子设备中常用的器件,在开关电源中也经常用到。这两种二极管具有开关特性好、耐压高、正向电流大、体积小等优点,在电子镇流器、不间断电源、变频电源、高频微波炉等设备中常用在整流、续流、限流等电路中。1超快速恢复二极管的性能特点 反向恢复时间trr:通过二极管的电流由零点正向转反向后,再由反向转换到规定值的时间。 平均整流电流Id:这时选用二极管的又一个主要指标。一般来说,选用管子的整流电流时设计输出电流的3倍以上。恢复和快速恢复二极管有3种结构,即单

42、管、共阴对管和共阳对管。所谓共阴、共阳是指两只二极管接法不同。2检测方法及选用原则 检测方法:利用万用表的电阻档或数字万用表的二极管检测档,能够检查二极管的单向导电性,并测出正向导通压降;用兆欧表能测出反向击穿电压。一般正向电阻为6,反向电阻为无穷大,可从读出的负载电压计算出正向导通压降。 选用原则:超快速恢复二极管在开关电源中可作为阻塞二极管和次级输出电压的整流管。超快速恢复二极管的反向恢复时间在2050ns之间;整流电流Id为最大输出电流IOM的3倍以上,即Id3IOM;最高反向工作电压VRM为最大反向峰值电压V(BR)S的2倍以上,即VRM2V(BR)S。2.3 光电耦合器光电耦合器(O

43、ptical Coupler,OC)也叫光电隔离器(Optical Isolationg,OI),简称光耦。它时一种以红外光进行信号传递的器件,由两部分组成:一是发光体,实际上时一只发光二极管,受输入电流的控制,发出不同强度的红外光;另一部分时受光器,受光器接受光照以后,产生光电流并从输出端输出。它的光电反应也是随着光的强弱改变而变化的。这就实现了“电光电”功能转换,也就是隔离信号传递。光电耦合器的主要优点是单向信号传输,输入端和输出端完全实现了隔离,不受其他任何电气干扰和电磁干扰,具有很强的抗干扰能力。因为它时一种发光体,而且用低电平的电源供电,所以它的使用寿命长,传输效率高,而且体积小,可

44、广泛用于级间耦合、信号传输、电气隔离、电路开关以及电平转换等。在仪器仪表、通信设备及各种电路接口中都应用到了光电耦合器。在开关电源电路中利用光电耦合器构成反馈电路,通过光电耦合器来调整、控制输出电压,达到稳定输出电压的目的;通过光电耦合器进行脉冲转换。实际上,光电耦合器有晶体管、达林顿、可控硅、磁效应管等多种输出形式。图2-5 光电耦合器及其典型用法通常的光电耦合器由于它的非线性,因此在模拟电路中的应用只限于对较高频率的小信号的隔离传送。普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。1光耦合器的

45、性能特点及其抗干扰作用光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光。光电耦合器的外壳是密封的,它不受外部光的影响。光电耦合器的隔离电阻很大、隔离电容很小(约几个pF),所以能阻止电路性耦合产生的电磁干扰。线性方式工作的光电耦合器是在光电耦合器的输入端加控制电压,在输

46、出端会成比例地产生一个用于进一步控制下一级的电路的电压。它由发光二极管和光敏三极管组成,当发光二极管接通而发光,光敏三级管导通。光电耦合器是电流驱动型,需要一定的电流才能使发光二极管导通,如果输入信号太小,发光二极管不会导通,其输出信号将失真。在开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。在开关电源中我们是采用电压环进行闭环调节实现输出电压的稳定输出的,光电耦合器作为输入采样、反馈信号、输出驱动的隔离器件。一方面光电耦合器可以起到隔离两个系统地线的作用,使两个系统的电源相互独立,消除地电位不同所产生的影响。另一方面,光电耦合器的发光二极管是

47、电流驱动器件,可以形成电流环路的传送形式,电流环路是低阻抗电路,对噪音的敏感度低,提高了系统的抗干扰能力,起到了电磁兼容和隔离抗干扰的作用,不会因为电路中的高频电流的电磁干扰对控制电路产生干扰。2光耦合器的技术参数主要有发光二极管正向压降、正向电流、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压、集电极-发射极饱和压降。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间等参数。电流传输比CTR是光耦合器的重要参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流与直流输入电流IF的百分比。其公式为: (2-1)采用一只光敏三极管的光耦合器,CTR的范围大多为20%300%(如4N35),而PC817则为80%160%,达林顿型光耦合器(如4N30

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报