收藏 分享(赏)

防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响.pdf

上传人:爱文献爱资料 文档编号:21753418 上传时间:2024-04-21 格式:PDF 页数:5 大小:3.37MB
下载 相关 举报
防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响.pdf_第1页
第1页 / 共5页
防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响.pdf_第2页
第2页 / 共5页
防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响.pdf_第3页
第3页 / 共5页
亲,该文档总共5页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、34DOI:10.xgccl202308006MATERIALS FOR MECHANICAL ENGINEERINGVol.47No.8Aug.20232023年8 月第47 卷第8 期2023机械工程材料防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响郑程(上海材料研究所有限公司,上海市工程材料应用与评价重点实验室,上海2 0 0 437)摘要:采用TC4钛合金薄板防屈曲装置,在不同扭矩(1.52.5Nm)和不同应变水平(0.2 5%1.0%)下对SAPH440钢薄板试样进行拉压疲劳试验,研究了摩擦力对薄板试样疲劳寿命的影响,验证了防屈曲装置的适用性。结果表明:在以弹性应变为主导的低应变水

2、平(0.2 5%)下,试样的疲劳寿命随摩擦力的增大而略微降低;在以塑性应变为主导的中高应变水平(0.5%1.0%)下,试样的疲劳寿命随摩擦力的增大而增大;应变水平为0.2 5%,0.5%时试样裂纹扩展区中段疲劳辉纹间距均值分别为0.45,0.8 6 m,随着应变水平继续增大,疲劳辉纹变得不明显,出现了较为明显的二次裂纹。关键词:防屈曲装置;应变疲劳;摩擦力;薄板疲劳试样中图分类号:TG115.5;T G 142.41文献标志码:A文章编号:10 0 0-37 38(2 0 2 3)0 8-0 0 34-0 5Influence of Friction Force Between Anti-bu

3、ckling Device and Specimen onTensile and Compression Fatigue Life of SheetZHENG Cheng(Shanghai Key Laboratory for Engineering Materials Application and Evaluation,Shanghai Research Institute of Materials Co.,Ltd.,Shanghai 200437,China)Abstract:Tensile and compressive fatigue tests were carried out o

4、n SAPH440 steel sheet specimen with TC4titanium alloy sheet anti-buckling device under different torques(1.5-2.5 Nm)and different strain levels(0.25%-1.0%).The effect of friction force on the fatigue life of the sheet specimen was studied,and the applicability ofthe anti-buckling device was verified

5、.The results show that under the low strain level(0.25%)dominated by elasticstrain,the fatigue life of the specimen decreased slightly with the increase of friction force.Under the medium andhigh strain levels(0.5%-1.0%)dominated by plastic strain,the fatigue life of the specimen increased with thei

6、ncrease of friction force.When the strain levels were 0.25%and 0.5%,the average distance between fatiguestriations in the middle section of the crack propagation zone of the specimen was 0.45 m and 0.86 m,respectively.As the strain level continued to increase,the fatigue striations became less obvio

7、us,and more obvioussecondary cracks appeared.Key words:anti-buckling device;strain-controlled fatigue;friction force;sheet fatigue specimen0引言金属薄板在汽车、飞机、船舶等行业中应用非常广泛,用其加工的结构件在工作中经常受到拉压循环载荷的作用,因此需要获取其拉压疲劳性能数据。但通常薄板的厚度很小,刚度小,在承受压应力时易发生侧向失稳,即产生屈曲现象。如何防止金属薄收稿日期:2 0 2 2-0 4-2 1;修订日期:2 0 2 3-0 5-12作者简介:郑程

8、(198 8 一),男,江苏盐城人,高级工程师,学士板在拉压疲劳试验中产生屈曲,从而获得可靠的疲劳性能数据受到业内学者的普遍关注1-4。朱亦钢5 研制了一种侧向防屈曲装置并应用于存在压应力的疲劳试验中,发现安装防屈曲装置可以基本消除由压缩失稳产生的弯曲应力。陈云霞等6 发明了一种车身薄板疲劳试验装置,该装置考虑了试样和夹具间的对中性和摩擦力,包括对中装置和防屈曲装置,防屈曲装置通过平面凸台与试样接触,在安装前可涂润滑油以减小装置与试样间的摩擦力。CAO等7 研发了一种用于常规拉压试验机的测试35MATERIALS FOR MECHANICAL ENGINEERING郑程:防屈曲装置与试样间摩擦

9、力对薄板拉压疲劳寿命的影响2023机械工程材料夹具,可实现薄板拉压试验的顺利进行:试样的两侧各放一对可以相互滑动的楔形板,也可以抵靠在试验机上下夹具上;在装置的两侧安装受拉弹簧,确保试样同一侧的两块楔形板牢固接触;用3个长螺栓固定每一对楔形板的相对位置,增加滑动键槽来满足拉压时产生的应变,且楔形板的顶部和底部能始终和试验机夹具保持对齐。还有研究表明,为了实现薄板的拉压疲劳试验、确保试验结果的准确性,需要采用防屈曲装置8-12目前有关疲劳试验中防屈曲装置的研究主要考虑的是其摩擦力和表面张力的影响13-17,而有关其对薄板拉压双向应变疲劳试验结果影响的研究仍较少。因此,作者采用防屈曲装置对 SAP

10、H440 钢薄板试样进行了多级扭矩下多级应变疲劳试验,分析了试样与防屈曲装置间摩擦力对疲劳寿命的影响,拟为获得准确、可靠的金属薄板拉压疲劳性能数据提供参考。1试样制备与试验方法试验材料为厚度2 mm的SAPH440钢板,市售,其屈服强度为36 1MPa,抗拉强度为46 1MPa。根据GB/T15248-2008,使用XD-40A型数控铣床将钢板加工成如图1所示的疲劳试样,用砂纸逐级将工作段表面沿纵向打磨、抛光,使其表面粗糙度达到0.2 m。使用19JC型数字万能工具显微镜及CL-1型粗糙度轮廓仪抽检试样尺寸、形位公差等参数,结果均满足要求。0.8其他:R10.210F008个60.0130.0

11、16:022.0/1.51962图1疲劳试样形状和尺寸Fig.1Shape and size of fatigue specimen采用厚度为12 mm的 TC4 钛合金板制作如图2 所示的防屈曲装置(专利号:ZL202020267967.7)。安装时将精度为0.1级的TS-5000N型标准测力仪放在防屈曲装置中间,使用数字式高精度扭矩扳手,对4颗螺栓按对角线逐步施加相同的扭矩。由于试样在拉伸阶段厚度变薄,正压力减小,在压缩阶段厚度增大,正压力增大,故疲劳试验过程中的摩擦力理论上是非对称且循环的,直接测定较为困难,因此引人简化的摩擦力测试模型:将试薄板疲劳试样防屈曲板紧固螺栓聚四氟乙烯减磨块图

12、2防屈曲装置结构示意Fig.2Schematic of anti-buckling device structure样在中心处垂直于长轴方向切割成两半,在两半试样两侧安装防屈曲装置,对其施加轴向交变位移,测得防屈曲装置和试样之间的动摩擦力循环曲线。根据ASTME606/E606M-2021,使用MTSLandmark100型液压伺服试验系统及6 32.13F-20型引伸计(标距10 mm)进行双向应变控制低周疲劳试验,应变速率为0.0 0 2 s-1,应变比为一1,三角波,防屈曲装置螺栓的拧紧扭矩分别为1.5,2.0,2.5Nm,应变水平(最大应变)分别为0.2 5%,0.5%,0.7 5%,

13、1.0%,每种条件下各测3个试样。使用Quanta400FEG型扫描电子显微镜(SEM)观察疲劳断口形貌,测量疲劳辉纹间距。为验证该防屈曲装置在薄板拉压双向应变疲劳试验中的适用性,使用高速数字图像相关测量系统采集防屈曲板和减磨块在疲劳试验过程中的应变。试验前在防屈曲板的表面和侧面以及减磨块侧面喷涂哑光白漆,人为点涂黑漆,形成人工散斑,散斑中黑白色面积比约为1.3:1。拉压疲劳试验时应变水平为0.7 5%,应变速率为0.0 0 1s-1,应变比为一1,三角波,扭矩水平为2.5Nm。2试验结果与讨论2.1摩擦力在摩擦力测量模型中,摩擦力取动摩擦力曲线峰值与谷值之差。测得扭矩为1.5,2.0,2.5

14、Nm时防屈曲装置与试样间的摩擦力分别为430,46 0,490 N,正压力分别为2 52 4,36 14,4540 N。值得注意的是,摩擦力与试验载荷范围(试验载荷最大值与最小值之差)之比在0.2 5%低应变水平下为3.4%4.2%,在0.5%应变水平下为 3.1%3.6%,在 0.7 5%及1%中高应变水平下为2.7%3.1%,摩擦力与试验载荷范围之比随着应变的增加而减小。2.2疲劳性能当应变水平为0.2 5%时,试样的塑性应变分量36MATERIALSFOR MECHANICAL ENGINEERING郑程:防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响2023机械工程材料仅为0.2%,

15、弹性应变占主导;当应变水平为0.5%时,试样的塑性应变分量为0.7%,占应变范围的70%;当应变水平为0.7 5%时,试样的塑性应变分量上升至1.0%,占应变范围的6 7%;当应变水平为1.0%时,试样的塑性应变分量为1.6%,占应变范围的8 0%。由图3可见:在应变水平为0.2 5%条件下,随着摩擦力的增大,疲劳寿命呈略微下降的趋势;当应变水平增大至0.5%,0.7 5%,1.0%时,随着摩擦力增大,疲劳寿命均呈增大趋势,其中应变水平为1.0%的增速最大,其次为应变水平0.5%条件下,应变水平0.7 5%时增速最小,摩擦力由430 MPa增至490 MPa时,疲劳寿命增加了0.6%。4.53

16、.93.84.43.7(/N)(X/N)83.64.33.53.44.23.33.24.13.1430440450460470480490430440450460470480 490摩擦力/N摩擦力/N(a)0.25%(b)0.5%3.13.02.9(/N)A3.0(X/N)2.82.72.92.62.82.5430 440450460470480490430440450460470480490摩擦力/N摩擦力/N(c)0.75%(d)1.0%图3不同应变水平下薄板试样疲劳寿命与摩擦力的关系曲线Fig.3Curves of fatigue life vs friction force of s

17、heet specimens at different strain levels摩擦力的增大会导致应变疲劳试验过程中试验力的增大,从而导致试样提前断裂,疲劳寿命缩短。但当应变水平为0.5%,0.7 5%,1.0%时,随着扭矩的增加,摩擦力逐步增大,疲劳寿命却呈现略微增大的趋势。在1.0%应变水平下,当扭矩水平由1.5Nm增加至2.5Nm时,摩擦力增大了14%,正压力增大了8 0%,同时对数疲劳寿命也增大了7%。这可能是由于防屈曲装置对薄板试样施加的正压力产生了类似残余压应力的效果,正压力增大引起的疲劳寿命提升效应大于摩擦力增大引起的疲劳寿命降低效应2.3疲劳断口形貌由图4可见,当应变水平为0

18、.2 5%时,薄板试样的疲劳断口包括裂纹源区、裂纹扩展区和瞬断区。裂纹源区存在放射条纹,裂纹扩展区存在二次裂纹及擦伤,以及明显的台阶特征和疲劳辉纹。试样未发生明显屈曲。由图5可见:当应变水平为0.2 5%,0.5%时,裂纹扩展区中段疲劳辉纹间距均值分别为0.45,0.8 6 m;裂纹源区瞬断区裂纹扩展区2um50um100um(a)宏观断口(b)裂纹源区(c)裂纹扩展区图4在应变水平0.2 5%下薄板试样的疲劳断口形貌(扭矩1.5Nm)Fig.4 Fatigue fracture morphology of sheet specimen at strain level of 0.25%(tor

19、que of 1.5 Nm):(a)macroscopic fracture;(b)crack source and(c)crack propagation zone37MATERIALSFOR MECHANICALENGINEERING郑程:防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响2023机械工程材料umi088m5um5um(a)0.25%(b)0.5%5um5um(c)0.75%(d)1.0%图5不同应变水平下薄板试样疲劳断口上裂纹扩展区的SEM形貌(扭矩2.0 Nm)Fig.5SEM morphology of crack propagation zone on fatigne

20、 fracture of sheet specimens at different strain levels(torque of 2.0 Nm)当应变水平增大至0.7 5%,1.0%时,疲劳辉纹不明显,存在较为明显的二次裂纹。2.4防屈曲装置适用性验证在应变水平0.2 5%下拉压疲劳过程中,采用数字图像相关法测得防屈曲板正面产生的应变在一0.0 0 0 130.0 0 0 0 4,侧面产生的横向应变在0.000290.0 0 2 53,侧面产生的轴向应变在一0.0 0 0 17 0.0 0 0 31;聚四氟乙烯减磨块侧面产生的横向应变在0.0 0 0 6 6 0.0 0 2 43,侧面产生的

21、轴向应变在一0.0 0 0 0 9一0.0 0 0 0 2。由以上数据可知,防屈曲装置在薄板的拉压应变疲劳试验中,整体的变形量都较小,在防屈曲板侧面的横向变形量最大,约为0.2 5%。因此,可认为在该应变水平下,防屈曲装置均只发生弹性变形,塑性变形可忽略不计,该防屈曲装置在薄板拉压双向应变疲劳试验中有较好的适用性。3结论(1)在以弹性应变为主导的低应变水平(0.25%)下,试样的疲劳寿命随摩擦力的增大而略微降低;在以塑性应变占主导的中高应变水平(0.5%1.0%)下,试样的疲劳寿命随摩擦力的增大而增大。(2)应变水平为0.2 5%,0.5%时试样裂纹扩展区中段疲劳辉纹间距均值分别为0.450.

22、8 6 m,随着应变水平继续增大,疲劳辉纹变得不明显,出现了较为明显的二次裂纹。(3)防屈曲装置在薄板拉压双向应变疲劳试验中整体的变形量都较小,其侧面的横向变形量最大,但也仅约为0.2 5%,说明该防屈曲装置在薄板拉压疲劳试验中具有较好的适用性。参考文献:1孙孝央,王泽华,周泽华,等.金属材料疲劳寿命评估的研究现状J.机械工程材料,2 0 17,41(2):1-7.SUN X Y,WANG Z H,ZHOU Z H,et al.Research status offatigue life assessment of metal materials JJ.Materials forMechani

23、cal Engineering,2017,41(2):1-7.2孙晓冉,宋月,谷秀锐,等.汽车用SPHC热轧薄钢板的低周疲劳特性J.机械工程材料,2 0 2 1,45(4):57-6 0.SUN X R,SONG Y,GU X R,et al.Low cycle fatiguecharacteristics of SPHC hot-rolled steel sheet for automobileJJ.Materials for Mechanical Engineering,2021,45(4):57-60.3兰天,杨凤鹏,李博林.SAPH440汽车薄板高低周疲劳特性试验研究J.力学季刊,2

24、0 16 37(3):559-56 4.LAN T,YANG F P,LI B L.Experimental study on high andlow fatigue properties of automobile sheet SAPH440 J.ChineseQuarterlyof Mechanics,2016,37(3):559-564.4闻邦椿.现代机械设计实用手册M.北京:机械工业出版社,2015.WEN B C.Modern mechanical design practical guide M.Beijing:China Machine Press,2015.5朱亦钢。一种用于金

25、属薄板轴向拉压疲劳试验的防弯夹具J.38(上接第2 8 页)MATERIALSFOR MECHANICAL ENGINEERING郑程:防屈曲装置与试样间摩擦力对薄板拉压疲劳寿命的影响2023机械工程材料实验力学,2 0 0 5,2 0(2):2 41-2 47.ZHU Y G.A research for thin metal sheet fatigue test undertension-compression loading J.Journal of ExperimentalMechanics,2005,20(2):241-247.6陈云霞,杨旋,李创.车身薄板疲劳试验装置及测试方法:1

26、02735557AP.2012-10-17.CHEN Y,YANG X,LI C.Fatigue test device for vehicle bodythin plate,and test method thereof:102735557APJ.2012-10-17.7CAO J A,LEE W,CHENG H S,et al.Experimental andnumerical investigation of combined isotropic-kinematichardening behavior of sheet metalsJ.International Journal ofPl

27、asticity,2009,25(5):942-972.8TONG C,WU J,HUA K,et al.Low-cycle fatigue lifeevaluation of buckling-restrained braces based on cumulativeplastic deformation curves J.Advances in StructuralEngineering,2022,25(2):336-354.9苏少普,常文魁,陈先民。飞机典型壁板结构剪切屈曲疲劳试验与分析方法J.航空学报,2 0 2 2,43(5):2 2 52 19.SU S P,CHANG W K,C

28、HEN X M.Fatigue buckling test andanalytical approach of aircraft typical panel structuresJ.ActaAeronautica et Astronautica Sinica,2022,43(5):225219.10苏洪英,刘仁东,芦延鹏,等.汽车薄板拉-压高周疲劳试样的形状和尺寸选取.理化检验(物理分册),2 0 2 1,57(10):2 7-31.SU H Y,LIU R D,LU Y P,et al.Shape and size selection oftension-compression high c

29、ycle fatigue specimensforautomobile sheetJJ.Physical Testing and Chemical Analysis(Part A;Physical Testing),2021,57(10):27-31.11HU Y N,WU S C,WITHERS P J,et al.The effect ofmanufacturing defects on the fatigue life of selective laser15SHIH C C,YEH D H,HO N J,et al.The study of crack-propagation beha

30、viors and dislocation structures in cyclicallydeformed polycrystalline IF steel J.Materials Science andEngineering:A,2011,528(21):6381-6386.16KUMAGAI M,YOKOYAMA R.Characterization ofmicrostructures by X-ray diffraction line profile analysisJ.Journal of the Society of Materials Science,Japan,2020,69(

31、3):277-283.17TAKEBAYASHI S,KUNIEDA T,YOSHINAGA N,et al.Comparison of the dislocation density in martensitic steelsevaluated by some X-ray diffraction methods J.ISIJInternational,2010,50(6):875-882.18MASUMURA T,URANAKA S,MATSUDA K,et al.Analysis of dislocation density by direct-fitting/modifiedWillia

32、mson-Hall(D F/m WH)m e t h o d i n t e m p e r e d l o w-carbon martensitic steel J.Tetsu-to-Hagane,2020,106(11):826-834.19SHINTANI T,MURATA Y.Evaluation of the dislocationdensity and dislocation character in cold rolled Type 304 steeldetermined by profile analysis of X-ray diffractionJ.Actamelted T

33、i-6Al-4V structuresJ.Materials&Design,2020,192:108708.12PRASHANTH NAIK R,SAMATHAM M,PATANGAY VK,et al.Experimental study on the effect of annealing onfatigue life of SS 304 steels JJ.International Journal ofScientific Research in Science,Engineering and Technology,2020:164-169.13机械工业理化检验人员技术培训和资格鉴定委

34、员会.力学性能试验M.北京:中国计量出版社,2 0 0 8.Technical Training and Qualification Appraisal Committee forPhysical and Chemical Inspection Personnel in MechanicalIndustry.Mechanical property test M.China MetrologyPress,2008.14陶美娟.材料质量检测与分析技术MI.北京:中国质检出版社,2 0 18.TAO M J.Material quality detection and analysis techno

35、logyMJ.Beijing:China Quality Inspection Press,2018.15刘冬,薛欢,杜丽影,等.冷轧薄板低周疲劳试验抗屈曲装置:205749099UP.2016-11-30.LIU D,XUE H,DU L Y,et al.Flat cold rolled sheet hangsdown anti bucking device of all fatigue test:205749099UP.2016-11-30.16DIETRICH L,SOCHA G,KOWALEWSKI Z L.Anti-buckling fixture for large deforma

36、tion tension-compressioncyclic loading of thin metal sheetsJ.Strain,2014,50(2):174-183.17KOWALEWSKI Z L,D I ET R I C H L,SO C H AG.Experimental investigation of thin brass sheets under tension-compression cyclic loading J.Journal of Theoretical andApplied Mechanics,2015(3):757-757.Materialia,2011,59

37、(11):4314-4322.20POLAK J,DEGALLAIX S,DEGALLAIX G.The role ofcyclic slip localization in fatigue damage of materialsJJ.LeJournal De Physique IV,1993,3:679-684.21JOHNSTON T L,FELTNER C E.Grain size effects in thestrain hardening of polycrystals J.Metallurgical andMaterials Transactions B,1970,1(5):116

38、1-1167.22GREULICH F,MURR L E.Effect of grain size,dislocationcell size and deformation twin spacing on the residualstrengthening of shock-loaded nickel JJ.Materials Scienceand Engineering,1979,39(1):81-93.23CUDDY J,NABIL,BASSIM M.Study of dislocation cellstructures from uniaxial deformation of AISI

39、4340 steelJ.Materials Science and Engineering:A,1989,113:421-429.24DODARAN M,KHONSARI M M,SHAO S.Criticaloperating stress of persistent slip bands in Cu J.Computational Materials Science,2019,165:114-120.25KRUML T,POLAK J.Fatigue softening of X10CrAl24ferritic steelJJ.Materials Science and Engineering:A,2001,319/320/321:564-568.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 综合论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报