收藏 分享(赏)

2.1曲线与方程赛课获奖课件公开课一等奖课件省赛课获奖课件.pptx

上传人:知识图书馆 文档编号:24183178 上传时间:2024-11-30 格式:PPTX 页数:40 大小:1.70MB
下载 相关 举报
2.1曲线与方程赛课获奖课件公开课一等奖课件省赛课获奖课件.pptx_第1页
第1页 / 共40页
2.1曲线与方程赛课获奖课件公开课一等奖课件省赛课获奖课件.pptx_第2页
第2页 / 共40页
2.1曲线与方程赛课获奖课件公开课一等奖课件省赛课获奖课件.pptx_第3页
第3页 / 共40页
2.1曲线与方程赛课获奖课件公开课一等奖课件省赛课获奖课件.pptx_第4页
第4页 / 共40页
2.1曲线与方程赛课获奖课件公开课一等奖课件省赛课获奖课件.pptx_第5页
第5页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2.1 曲线与方程曲线与方程2.1.1 曲线与方程曲线与方程为什么为什么?复习回想复习回想:我我们研究了直研究了直线和和圆的方程的方程.1.通通过点点P(0,b)和斜率和斜率为k的直的直线L的方程的方程为_2.在直角坐在直角坐标系中系中,平分第一、三象限的平分第一、三象限的直直线方程是方程是_3.圆心心为C(a,b),半径半径为r的的圆C的方程的方程为_.x-y=0点的横坐标与纵坐标相等点的横坐标与纵坐标相等x=y(或x-y=0)第一、三象限角平分线第一、三象限角平分线含有关系含有关系:x-y=0 xy0(1)上点的坐标都是方程上点的坐标都是方程x-y=0的解的解(2)以方程以方程x-y=0的

2、解为坐标的点都的解为坐标的点都在在 上上曲线曲线条件条件方程方程坐标系中坐标系中,平分第一、三象限的直线方程是平分第一、三象限的直线方程是x-y=0思考思考?圆心为圆心为C(a,b),半径为半径为r的圆的圆C的方程为的方程为:思考思考?满足关系:满足关系:(1)、如果)、如果是圆上的点,那么是圆上的点,那么一定是这个方程的解一定是这个方程的解0 xyM(2)、方程)、方程表示如图的圆表示如图的圆图像上的点图像上的点M与此方程与此方程 有什么关系?有什么关系?的解,那么以它为的解,那么以它为坐标的点一定在圆上。坐标的点一定在圆上。(2)、如果、如果是方程是方程(1)曲线上点的坐标都是这个方程的解

3、曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程曲线的方程;这条曲线叫做方程的曲线方程的曲线.定义定义:1.曲线的方程曲线的方程反映的是图形所满足的数量关系反映的是图形所满足的数量关系;方程的曲线方程的曲线反映的是数量关系所示的图形反映的是数量关系所示的图形.f(x,y)=00 xy 普通地普通地,在直角坐标系中在直角坐标系中,如果某曲线如果某曲线C(看作点的集合或适合某种条件的点的轨迹看作点的集合或适合某种条件的点的轨迹)上上的点与一种二元方程的点与一种二元方程f(x,y)=0的实数解建立了的实数

4、解建立了以下的关系以下的关系:阐明阐明:2.“曲线上的点的坐标都是这个方程曲线上的点的坐标都是这个方程 的解的解”,阐明曲线上没有坐标不满足方程的点,也就是阐明曲线上没有坐标不满足方程的点,也就是说曲线上全部的点都符合这个条件而毫无例外说曲线上全部的点都符合这个条件而毫无例外.(纯正性)(纯正性).3.“以这个方程的解为坐标的点都在曲线上以这个方程的解为坐标的点都在曲线上”,阐明符合条件的全部点都在曲线上而毫无遗漏阐明符合条件的全部点都在曲线上而毫无遗漏.(完备性)(完备性).由曲线的方程的定义可知由曲线的方程的定义可知:如果曲线如果曲线C的方程是的方程是 f(x,y)=0,那么点,那么点P0

5、(x0,y0)在曲线在曲线C 上的上的 充要条件充要条件 是是f(x0,y0)=0 例例1:判断下列命题与否对的判断下列命题与否对的解解:(1)不对的,不含有完备性,应为不对的,不含有完备性,应为x=3,(2)不对的不对的,不含有纯正性,应为不含有纯正性,应为y=1.(3)对的对的.(4)不对的不对的,不含有完备性不含有完备性,应为应为x=0(-3y0).(1)过点过点A(3,0)且垂直于)且垂直于x轴的直线的方程轴的直线的方程为为x=3(2)到到x轴距离等于轴距离等于1的点构成的直线方程为的点构成的直线方程为y=1(3)到两坐标轴的距离之积等于到两坐标轴的距离之积等于1的点的轨迹方的点的轨迹

6、方程为程为xy=1 (4)ABC的顶点的顶点A(0,-3),B(1,0),C(-1,0),D为为BC中点,则中线中点,则中线AD的方程的方程x=0例例2.证明与两条坐标轴的距离的积是常数证明与两条坐标轴的距离的积是常数k(k0)的点的轨迹方程是的点的轨迹方程是xy=k.M 第一步,设 M(x0,y0)是曲线C上任一点,证明(x0,y0)是f(x,y)=0的解;归纳:证明已知曲线的方程的办法和环节 第二步,设(x0,y0)是 f(x,y)=0的解,证明点 M(x0,y0)在曲线C上.练习练习1:下列各题中,下图各曲线的曲线方程是下列各题中,下图各曲线的曲线方程是所列出的方程吗?为什么?所列出的方

7、程吗?为什么?(1)曲线曲线C为过点为过点A(1,1),B(-1,1)的折的折线线(如图如图(1)其方程为其方程为(x-y)(x+y)=0;(2)曲线曲线C是顶点在原点的抛物线其方程是顶点在原点的抛物线其方程为为x+=0;(3)曲线曲线C是是,象限内到象限内到x轴,轴,y轴的距轴的距离乘积为离乘积为1的点集其方程为的点集其方程为y=。10 xy-110 xy-11-2210 xy-11-221练习练习2:下述方程表达的图形分别是下图下述方程表达的图形分别是下图中的哪一种?中的哪一种?-=0|x|-|y|=0 x-|y|=011OXY11OXY11OXY-1-111OXY-1ABCD2.1.2求

8、曲线的方程求曲线的方程(1)复习回想复习回想2.练习:练习:(1)设设A(2,0)、B(0,2),能否说线段能否说线段AB的方程为的方程为x+y-2=0?(2)方程方程x2-y2=0表达的图形是表达的图形是_1.复习曲线的方程和方程的曲线的概念复习曲线的方程和方程的曲线的概念3.证明已知曲线的方程的办法和环节证明已知曲线的方程的办法和环节 上一节,我们已经建立了曲线的方程上一节,我们已经建立了曲线的方程.方程的方程的曲线的概念曲线的概念.运用这两个重要概念,就能够借运用这两个重要概念,就能够借助于坐标系,用坐标表达点,把曲线当作满足助于坐标系,用坐标表达点,把曲线当作满足某种条件的点的集合或轨

9、迹,用曲线上点的坐某种条件的点的集合或轨迹,用曲线上点的坐标(标(x,y)所满足的方程)所满足的方程f(x,y)=0表达曲线,通表达曲线,通过研究方程的性质间接地来研究曲线的性质过研究方程的性质间接地来研究曲线的性质.这一节,我们就来学习这一办法这一节,我们就来学习这一办法.“数形结合数形结合”数学思想数学思想的基础的基础1解析几何与坐解析几何与坐标法:法:我我们把借助于坐把借助于坐标系研究几何系研究几何图形的形的办法叫做坐法叫做坐标法法.在数学中,用坐在数学中,用坐标法研究几何法研究几何图形的知形的知识形成了一形成了一门叫叫解析几何的学科解析几何的学科.因此,解析几何是用代数因此,解析几何是

10、用代数办法研究几何法研究几何问题的一的一门数学学科数学学科.2平面解析几何研究的重要问题:平面解析几何研究的重要问题:(1)根据已知条件,求出表达平面曲线的方程;)根据已知条件,求出表达平面曲线的方程;(2)通过方程,研究平面曲线的性质)通过方程,研究平面曲线的性质.阐明:本节重要讨论求解曲线方程的普通环节阐明:本节重要讨论求解曲线方程的普通环节.由两点间的距离公式,点M所适合条件可表达为:将上式两将上式两边平方,整平方,整顿得:得:x+2y7=0 我我们证明方程明方程是是线段段AB的垂直平的垂直平分分线的方程的方程.(1)由求方程的)由求方程的过程可知,垂直平程可知,垂直平分分线上每一点的坐

11、上每一点的坐标都是方程都是方程解;解;(2)设点点M1的坐的坐标(x1,y1)是方)是方程程的解,即的解,即:x+2y17=0 x1=72y1解法二解法二:设设M(x,y)是线段是线段AB的垂直平分线上任意一点的垂直平分线上任意一点,也就是点也就是点M属于集合属于集合问题问题1.设设A、B两点的坐标是两点的坐标是(1,1),(3,7),求线段,求线段AB的垂直平分线的方程的垂直平分线的方程.即点即点M1在在线段段AB的垂直平分的垂直平分线上上.由由(1)、(2)可知方程可知方程是是线段段AB的垂直平分的垂直平分线的方程的方程.点点M1到到A、B的距离分别是的距离分别是由上面的例子能够看出,求曲

12、线(图形)的方由上面的例子能够看出,求曲线(图形)的方程,普通有下面几个环节:程,普通有下面几个环节:阐明:普通状况下,化简前后方程的解集是相阐明:普通状况下,化简前后方程的解集是相似的,环节(似的,环节(5)能够省略不写,如有特殊状况,)能够省略不写,如有特殊状况,可适宜予以阐明可适宜予以阐明.另外,根据状况,也能够省略另外,根据状况,也能够省略环节(环节(2),直接列出曲线方程),直接列出曲线方程.(1)建系设点:建立适宜的坐标系建系设点:建立适宜的坐标系,用有序实数用有序实数对(对(x,y)表达曲线上任意一点)表达曲线上任意一点M的坐标;的坐标;(2)列式列式:写出适合条件写出适合条件p

13、的点的点M集合集合P=M|p(M)(3)代换代换:用坐标表达条件用坐标表达条件p(M),列出方程列出方程f(x,y)=0;(4)化简化简:化方程化方程f(x,y)=0为最简形式;为最简形式;(5)审查审查:阐明以化简后的方程的解为坐标的点阐明以化简后的方程的解为坐标的点都在曲线上都在曲线上.例例2.已知一条直线已知一条直线l和它上方的一种点和它上方的一种点A,点,点A到到l的距离是的距离是2,一条曲线也在一条曲线也在l的上方,它上面的每的上方,它上面的每一点到一点到A的距离减去到的距离减去到l的距离的差都是的距离的差都是2,建立建立适宜的坐标系,求这条曲线的方程适宜的坐标系,求这条曲线的方程.

14、取直线取直线l为为x轴轴,过点过点A且垂直于直线且垂直于直线l的直线为的直线为y轴轴,建立坐标系建立坐标系xOy,解:解:2)列式列式3)代换)代换4)化简化简5)审查)审查1)建系设点)建系设点由于曲由于曲线在在x轴的上方,因此的上方,因此y0,因此曲因此曲线的方程是的方程是 设点设点M(x,y)是曲线上任意一点,是曲线上任意一点,MBx轴,垂足是轴,垂足是B,通过上述两个例题理解坐标法的解题办法,通过上述两个例题理解坐标法的解题办法,明确建立适宜的坐标系是求解曲线方程的基础;明确建立适宜的坐标系是求解曲线方程的基础;同时,根据曲线上的点所要适合的条件列出等同时,根据曲线上的点所要适合的条件

15、列出等式,是求曲线方程的重要环节,在这里惯用到式,是求曲线方程的重要环节,在这里惯用到某些基本公式,如两点间距离公式,点到直线某些基本公式,如两点间距离公式,点到直线的距离公式,直线的斜率公式,中点公式等,的距离公式,直线的斜率公式,中点公式等,因此先要理解上述知识,必要时作适宜复习因此先要理解上述知识,必要时作适宜复习.2.1.2 求曲线的方程求曲线的方程(2)求曲线(图形)的方程环节:求曲线(图形)的方程环节:阐明:普通状况下,化简前后方程的解集是相阐明:普通状况下,化简前后方程的解集是相似的,环节(似的,环节(5)能够省略不写,如有特殊状况,)能够省略不写,如有特殊状况,可适宜予以阐明可

16、适宜予以阐明.另外,根据状况,也能够省略另外,根据状况,也能够省略环节(环节(2),直接列出曲线方程),直接列出曲线方程.(1)建系设点:建立适宜的坐标系建系设点:建立适宜的坐标系,用有序实数用有序实数对(对(x,y)表达曲线上任意一点)表达曲线上任意一点M的坐标;的坐标;(2)列式列式:写出适合条件写出适合条件p的点的点M集合集合P=M|p(M)(3)代换代换:用坐标表达条件用坐标表达条件p(M),列出方程列出方程f(x,y)=0;(4)化简化简:化方程化方程f(x,y)=0为最简形式;为最简形式;(5)审查审查:阐明以化简后的方程的解为坐标的点阐明以化简后的方程的解为坐标的点都在曲线上都在

17、曲线上.复习回想复习回想解解:练习练习1.2.BB3.4.到到F(2,0)和和y轴的距离相等的动点的轨迹方轴的距离相等的动点的轨迹方程是程是_ 解解:设动点为设动点为(x,y),则由题设得,则由题设得化简得化简得:y2=4(x-1)这就是所求的轨迹方程这就是所求的轨迹方程.y2=4(x-1)5.在三角形在三角形ABC中,若中,若|BC|=4,BC边上的边上的中线中线AD的长为的长为3,求点,求点A的轨迹方程的轨迹方程.设设A(x,y),又,又D(0,0),因此,因此化简得化简得:x2+y2=9 (y0)这就是所求的轨迹方程这就是所求的轨迹方程.解解:取取B、C所在直线为所在直线为x轴,线段轴,

18、线段BC的中垂的中垂线为线为y轴,建立直角坐标系轴,建立直角坐标系.1.直接法直接法:求轨迹方程最基本的办法求轨迹方程最基本的办法,直接通过直接通过建立建立x,y之间的关系之间的关系,构成构成 F(x,y)=0 即可即可.直接法直接法 定义法定义法 代入法代入法 参数法参数法求轨迹方程的常见办法求轨迹方程的常见办法:2.定义法:(待定系数法)运用所学过的圆的定义法:(待定系数法)运用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种办定义直接写出所求的动点的轨迹方程,这种办法叫做定义法这种办法规定题设中有定点与法叫

19、做定义法这种办法规定题设中有定点与定直线及两定点距离之和或差为定值的条件,定直线及两定点距离之和或差为定值的条件,或运用平面几何知识分析得出这些条件(下或运用平面几何知识分析得出这些条件(下面的课中讲)面的课中讲)3.代入法代入法:这个办法又叫有关点法或坐标代换这个办法又叫有关点法或坐标代换法法.即运用动点即运用动点P(x,y)是定曲线是定曲线F(x,y)=0上上的动点的动点,另一动点另一动点P(x,y)依赖于依赖于P(x,y),那么可谋求关系式那么可谋求关系式x=f(x,y),y=g(x,y)后裔入后裔入方程方程F(x,y)=0中,得到动点中,得到动点P的轨迹方程的轨迹方程.例、已知例、已知

20、ABC,A(-2,0),B(0,-2),第三个顶点第三个顶点C在曲线在曲线y=3x2-1上移动上移动,求求ABC的重心的轨的重心的轨迹方程迹方程.4.参数法参数法:选用适宜的参数选用适宜的参数,分别用参数表达动分别用参数表达动点坐标点坐标x,y,得出轨迹的参数方程,消去参数,即得出轨迹的参数方程,消去参数,即得其普通方程。得其普通方程。归纳:选参数时必须首先考虑到制约动点的多归纳:选参数时必须首先考虑到制约动点的多个因素,然后再选用适宜的参数,常见的参数个因素,然后再选用适宜的参数,常见的参数有角度、直线的斜率、点的坐标、线段长度等。有角度、直线的斜率、点的坐标、线段长度等。例、例、经过原点的直原点的直线l与与圆相交于相交于两两个不同点个不同点A A、B B,求,求线段段ABAB的中点的中点M M的的轨迹方程迹方程.消参法消参法1.1.求曲求曲线的方程的普通的方程的普通环节:设(建系(建系设点)点)找(找等量关系)找(找等量关系)列(列方程)列(列方程)化(化化(化简方程)方程)验(以方程的解(以方程的解为坐坐标的点都是曲的点都是曲线上的上的点)点)-M(x,y)-P=M|M满足的条件课堂小结课堂小结2.“数形结合数形结合”数学思想的基础数学思想的基础3、求曲线、求曲线 方程的四种办法:直接法、定义方程的四种办法:直接法、定义法、代入法、参数法法、代入法、参数法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其他文案

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报