1、0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA解答:解:(1)如图(1)所示,连接PB,AB是O的直径且P是的中点,PAB=PBA=45,APB=90,又在等腰三角形ABC中有AB=13,PA=(2)如图(2)所示:连接BCOP相交于M点,作PNAB于点N,P点为弧BC的中点,OPBC,OMB=90,又因为AB为直径ACB=90,ACB=OMB,OPAC,CAB=POB,又因为ACB=ONP=90,ACB0NP=,又AB=13 AC=5 OP=,代入得 ON=,AN=OA+ON=9在RTOPN中,有NP2=0P2ON2=36在RTANP中 有PA=3PA=3
2、点评:本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键 23(10分)(2014武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销量的相关信息如下表:时间x(天)1x5050x90售价(元/件)x+4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果 考点:二次函数的应用分析:(1)根据单
3、价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案解答:解:(1)当1x50时,y=(2002x)(x+4030)=2x2+180x+200,当50x90时,y=(2002x)(9030)=120x+12000,综上所述:y=;(2)当1x50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=2452+18045+2000=6050,当50x90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品
4、第45天时,当天销售利润最大,最大利润是6050元;(3)当20x60时,每天销售利润不低于4800元点评:本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值 24(10分)(2014武汉)如图,RtABC中,ACB=90,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0t2),连接PQ(1)若BPQ与ABC相似,求t的值;(2)连接AQ,CP,若AQCP,求t的值;(3)试证明:PQ的中点在ABC的一条中位线上 考点:相似形综合题分析:(1
5、)分两种情况讨论:当BPQBAC时,=,当BPQBCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PMBC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=84t,根据ACQCMP,得出=,代入计算即可;(3)作PEAC于点E,DFAC于点F,先得出DF=,再把QC=4t,PE=8BM=84t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在ABC的一条中位线上解答:解:(1)当BPQBAC时,=,BP=5t,QC=4t,AB=10cm,BC=8cm,=,t=1;当BPQBCA时,
6、=,=,t=,t=1或时,BPQ与ABC相似;(2)如图所示,过P作PMBC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=84t,NAC+NCA=90,PCM+NCA=90,NAC=PCM且ACQ=PMC=90,ACQCMP,=,=,解得:t=;(3)如图,仍有PMBC于点M,PQ的中点设为D点,再作PEAC于点E,DFAC于点F,ACB=90,DF为梯形PECQ的中位线,DF=,QC=4t,PE=8BM=84t,DF=4,BC=8,过BC的中点R作直线平行于AC,RC=DF=4成立,D在过R的中位线上,PQ的中点在ABC的一条中位线上点评:此题考查了相似形综合,用到的知识点是
7、相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论 25(12分)(2014武汉)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点 (1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=时,在直线AB下方的抛物线上求点P,使ABP的面积等于5;(3)若在抛物线上存在定点D使ADB=90,求点D到直线AB的最大距离 考点:二次函数综合题;解一元二次方程-因式分解法;根与系数的关系;勾股定理;相似三角形的判定与性质专题:压轴题分析:(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可(2)只需联立两函数的解析式
8、,就可求出点A、B的坐标设出点P的横坐标为a,运用割补法用a的代数式表示APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标(3)设点A、B、D的横坐标分别为m、n、t,从条件ADB=90出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题解答:解:(1)当x=2时,y=(2)k+2k+4=4直线AB:y=kx+2k+4必经过定点(2,4)点C的坐标为(2,4)(2)k=,直线的解析式为y=x+3联立,解
9、得:或点A的坐标为(3,),点B的坐标为(2,2)过点P作PQy轴,交AB于点Q,过点A作AMPQ,垂足为M,过点B作BNPQ,垂足为N,如图1所示设点P的横坐标为a,则点Q的横坐标为ayP=a2,yQ=a+3点P在直线AB下方,PQ=yQyP=a+3a2AM+NB=a(3)+2a=5SAPB=SAPQ+SBPQ=PQAM+PQBN=PQ(AM+BN)=(a+3a2)5=5整理得:a2+a2=0解得:a1=2,a2=1当a=2时,yP=(2)2=2此时点P的坐标为(2,2)当a=1时,yP=12=此时点P的坐标为(1,)符合要求的点P的坐标为(2,2)或(1,)(3)过点D作x轴的平行线EF,
10、作AEEF,垂足为E,作BFEF,垂足为F,如图2AEEF,BFEF,AED=BFD=90ADB=90,ADE=90BDF=DBFAED=BFD,ADE=DBF,AEDDFB设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2AE=yAyE=m2t2BF=yByF=n2t2ED=xDxE=tm,DF=xFxD=nt,=化简得:mn+(m+n)t+t2+4=0点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,m、n是方程kx+2k+4=x2即x22kx4k8=0两根m+n=2k,mn=4k84k8+2kt+t2+4=0,即t2+2kt4k4=0即(t2)(t+2k+2)=0t1=2,t2=2k2(舍)定点D的坐标为(2,2)过点D作x轴的平行线DG,过点C作CGDG,垂足为G,如图3所示点C(2,4),点D(2,2),CG=42=2,DG=2(2)=4CGDG,DC=2过点D作DHAB,垂足为H,如图3所示,DHDCDH2当DH与DC重合即DCAB时,点D到直线AB的距离最大,最大值橋