1、课后训练基础巩固1下列计算:a2nana3n;223365;32321;a3a25a;(a)2(a)3a5.其中正确的式子有()A4个 B3个 C2个 D1个2若(2x1)01,则()Ax BxCx Dx3下列计算错误的是()A(2x)32x3Ba2aa3C(x)9(x)92x9D(2a3)24a64化简(a2)5(a5)2的结果是()A0 B2a7Ca10 D2a105下列各式的积结果是3x4y6的是()A(3xy2)3B(3xy2)3C(3x2y3)2D(3xy3)26下列运算正确的是()Aa2a3a6B(3x)33x3C2x35x27x5D(2a2)(3ab25ab3)6a3b210a3
2、b37计算(a4)3(a)34的结果是()A1 B1 C0 Da8下列计算正确的是()A2x3b23xbBm6n6m3n42m2n2Ca3b(0.5a2y)D(ax2x)xax9计算(14a2b221ab2)7ab2等于()A2a23 B2a3C2a23b D2a2b310计算(8m4n12m3n24m2n3)(4m2n)的结果等于()A2m2n3mnn2B2m23mn2n2C2m23mnn2D2m23mnn11(a2)5_;(2a)2_;(xy2)2_.12与单项式3a2b的积是6a3b22a2b29a2b的多项式是_13计算:(1)(5a2b3)(3a);(2)(2x)3(5x2y);(3
3、)2ab(5ab23a2b);(4)(3x1)(x2)14计算:(1)41243;(2);(3)32m13m1.能力提升15如果a2m1am2a7,则m的值是()A2 B3 C4 D516210(2)10所得的结果是()A211 B211 C2 D217(x4)(x8)x2mxn则m,n的值分别是()A4,32 B4,32C4,32 D4,3218已知(anbm1)3a9b15,则mn_.19若am2a3a5,则m_;若ax5,ay3则ayx_.20计算:a11(a)6(a)5.21计算:(1)a2b(ab2)3a(2b3)()(2ab)2ab;(2);(3)xy(2xy)xy2;(4)(a2
4、b)(a2b)(a24b2)22如果0,请你计算3(x7)12(y3)5的值23将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义adbc,上述记号就叫做2阶行列式若20,求x的值参考答案1C2.D3.A4.A5.D6.D7A点拨:原式a12a121.8A点拨:本题易错选D,D的正确结果为ax1,在实际运算中,“1”这一项经常被看作0而忽视,应引起特别的重视9B点拨:原式14a2b27ab221ab27ab22a3.10C点拨:原式8m4n4m2n12m3n24m2n4m2n34m2n2m23mnn2.11a104a2x2y4122ab3点拨:由题意列式(6a3b22a2b29
5、a2b)(3a2b)计算即得13解:(1)原式(5)(3)(a2a)b315a3b3.(2)原式8x3(5x2y)8(5)(x3x2)y40x5y.(3)原式10a2b36a3b2.(4)原式3x26xx23x27x2.14解:(1)41243412349;(2);(3)32m13m13(2m1)(m1)3m2.15A点拨:a2m1am2a2m1m2a7,所以2m1m27,解得m2.16A17.B18.6419.620解:原式a11a6(a)5a5(a)5a10,或者原式(a)11(a)6(a)5(a)5(a)5(a)10a10.21解:(1)原式a3b34a3b34a3b3a3b3.(2)原式y(y2)y(y2)y22yy22y4y.(3)原式2x2yxy2xy2.(4)原式(a22ab2ab4b2)(a24b2)(a24b2)(a24b2)a44a2b24a2b216b4a416b4.22解:由题意得得所以原式3(107)12(63)5331295313(32)53133103327.23解:先根据定义,将转化为(6x5)(6x5)(6x1)220,再进行化简去括号,得36x225(36x212x1)20,整理,得36x22536x212x120.移项,合并同类项,得12x6.系数化为1,得x.