1、一. 填空题1、一线性时不变系统,输入为 x(n)时,输出为y(n) ;则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax关系为: fs=2fmax 。3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(ejw),它的N点离散傅立叶变换X(K)是关于X(ejw)的 N 点等间隔 采样 。4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的 交叠 所产生的 现象。6若数字滤波
2、器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是 (N-1)/2 。7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较 窄 ,阻带衰减比较 小 。8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是 递归 型结构。 9、若正弦序列x(n)=sin(30n/120)是周期的,则周期是N= 8 。10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的 类型 有关,还与窗的 采样点数 有关11DFT与DFS有密切关系,因为有限长序列可以看成周期序列的 主值区间截断 ,而周期序列可以看成有限长序列的 周期延拓 。12对长度为N的序
3、列x(n)圆周移位m位得到的序列用xm(n)表示,其数学表达式为xm(n)= x(n-m)NRN(n)。13对按时间抽取的基2-FFT流图进行转置,并 将输入变输出,输出变输入 即可得到按频率抽取的基2-FFT流图。14.线性移不变系统的性质有 交换率 、 结合率 和分配律。15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、 泄漏 、 栅栏效应 和频率分辨率。16.无限长单位冲激响应滤波器的基本结构有直接型,直接型, 串联型 和 并联型 四种。17.如果通用计算机的速度为平均每次复数乘需要5s,每次复数加需要1s,则在此计算机上计算210点的基2 FFT需要 10 级蝶形运算,
4、总的运算时间是_s。三、计算题一、设序列x(n)=4,3,2,1 , 另一序列h(n) =1,1,1,1,n=0,1,2,3(1)试求线性卷积 y(n)=x(n)*h(n)(2)试求6点循环卷积。(3)试求8点循环卷积。二数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n);(3)x(n-1)6,(0n5);(4)x(-n-1)6,(0n5); 三已知一稳定的LTI 系统的H(z)为试确定该系统H(z)的收敛域和脉冲响应hn。解: 系统有两个极点,其收敛域可能有三种形式,|z|0.5, 0.5|z|2因为稳定,收敛域应包含单位圆,则系统收敛域为:
5、0.5|z|(5+3-1),所以y3(n)= x(n)h(n)-15,4,-3,13,-4,3,2,0y3(n)与y(n)非零部分相同。六用窗函数设计FIR滤波器时,滤波器频谱波动由什么决定 _,滤波器频谱过渡带由什么决定_。解:窗函数旁瓣的波动大小,窗函数主瓣的宽度七一个因果线性时不变离散系统,其输入为xn、输出为yn,系统的差分方程如下:y(n)-0.16y(n-2)= 0.25x(n-2)x(n)(1) 求系统的系统函数 H(z)=Y(z)/X(z);(2) 系统稳定吗?(3) 画出系统直接型II的信号流图;(4) 画出系统幅频特性。解:(1)方程两边同求Z变换:Y(z)-0.16z-2
6、Y(z)= 0.25z-2X(z)X(z)(2)系统的极点为:0.4和0.4,在单位圆内,故系统稳定。(3)(4)八如果需要设计FIR低通数字滤波器,其性能要求如下: (1)阻带的衰减大于35dB, (2)过渡带宽度小于p/6.请选择满足上述条件的窗函数,并确定滤波器h(n)最小长度N 解:根据上表,我们应该选择汉宁窗函数,十已知 FIR DF的系统函数为H(z)=3-2z-1+0.5z-2-0.5z-42z-5-3z-6,试分别画出直接型、线性相位结构量化误差模型。十一两个有限长的复序列xn和hn,其长度分别为N 和M,设两序列的线性卷积为yn=xn*hn,回答下列问题:.(1) 序列yn的
7、有效长度为多长? (2) 如果我们直接利用卷积公式计算yn ,那么计算全部有效yn的需要多少次复数乘法? (3) 现用FFT 来计算yn,说明实现的原理,并给出实现时所需满足的条件,画出实现的方框图,计算该方法实现时所需要的复数乘法计算量。 解:(1) 序列yn的有效长度为:N+M-1;(2) 直接利用卷积公式计算yn, 需要MN次复数乘法(3) 需要次复数乘法。十二用倒序输入顺序输出的基2 DIT-FFT 算法分析一长度为N点的复序列xn 的DFT,回答下列问题:(1) 说明N所需满足的条件,并说明如果N不满足的话,如何处理?(2) 如果N=8, 那么在蝶形流图中,共有几级蝶形?每级有几个蝶
8、形?确定第2级中蝶形的蝶距(dm)和第2级中不同的权系数(WNr )。(3) 如果有两个长度为N点的实序列y1n和y2 n,能否只用一次N点的上述FFT运算来计算出y1n和y2 n的DFT,如果可以的话,写出实现的原理及步骤,并计算实现时所需的复数乘法次数;如果不行,说明理由。解(1)N应为2的幂,即N2m,(m为整数);如果N不满足条件,可以补零。 (2)3级,4个,蝶距为2,WN0 ,WN2(3) yn=y1n+jy2n 十三考虑下面4个8点序列,其中 0n7,判断哪些序列的8点DFT是实数,那些序列的8点DFT是虚数,说明理由。(1)x1n=-1, -1, -1, 0, 0, 0, -1, -1,(2) x2n=-1, -1, 0, 0, 0, 0, 1, 1,(3) x3n=0, -1, -1, 0, 0, 0, 1, 1,(4) x4n=0, -1, -1, 0, 0, 0, -1, -1, 解:DFTxe(n)=ReX(k)DFTx0(n)=jImX(k)x4n的DFT是实数 , 因为它们具有周期性共轭对称性;x3n 的DFT是虚数 , 因为它具有周期性共轭反对称性十四. 已知系统函数,求其差分方程。解:十五.已知,画系统结构图。解:直接型I:直接型II:级联型:并联型:9