1、 【北师大版】九年级上册数学 第1章 的平行四边形 单元检测一、选一选(每小题3分,总计30分。请将正确答案的字母填写在表格内)1. 如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A. 20B. 24C. 40D. 482. 已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是( )A. 12cm2B. 24cm2C. 48cm2D. 96cm23. 如图,在ABCD中,AM,CN分别是BAD和BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A. AM=ANB. MNACC. MN是AMC的平分线D. BAD=1204. 如
2、图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,BEF=2BAC,FC=2,则AB的长为()A. 8B. 8C. 4D. 65. 下列说确的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线相等平行四边形是矩形D. 对角线互相平分的四边形是菱形6. 如图,在任意四边形ABCD中,AC,BD是对角线,E、F、G、H分别是线段BD、BC、AC、AD上的点,对于四边形EFGH的形状,某班的学生在数学课中,通过动手实践,探索出如下结论,其中错误的是( )A. 当E,F,G,H是各条线段的中点时,
3、四边形EFGH为平行四边形B. 当E,F,G,H是各条线段的中点,且ACBD时,四边形EFGH为矩形C. 当E,F,G,H是各条线段的中点,且AB=CD时,四边形EFGH为菱形D. 当E,F,G,H没有是各条线段的中点时,四边形EFGH可以为平行四边形7. 平行四边形、矩形、菱形、正方形共有的性质是( )A. 对角线互相平分B. 对角线相等C. 对角线互相垂直D. 对角形互相垂直平分8. 夹在两条平行线间的正方形ABCD、等边三角形DEF如图所示,顶点A、F分别在两条平行线上若A、D、F在一条直线上,则1与2的数量关系是()A. 1+2=60B. 21=30C. 1=22D. 1+22=909
4、. 已知四边形ABCD中,对角线AC与BD相交于点O,ADBC,下列判断中错误的是()A. 如果AB=CD,AC=BD,那么四边形ABCD是矩形B. 如果ABCD,AC=BD,那么四边形ABCD是矩形C. 如果AD=BC,ACBD,那么四边形ABCD是菱形D. 如果OA=OC,ACBD,那么四边形ABCD是菱形10. 如图,AD是ABC的角平分线,DE,DF分别是ABD和ACD的高得到下面四个结论:OA=OD;ADEF;当A=90时,四边形AEDF是正方形;上述结论中正确的是( )A. B. C. D. 二、 填 空 题(每题4分,总计20分)11. 如图,两张等宽的纸条交叉叠放在一起,若重合
5、部分构成的四边形中,则的长为_12. 如图,矩形ABCD中,E、F分别为AD、AB上一点,且EF=EC,EFEC,若DE=2,矩形周长为16,则矩形ABCD的面积为_ 13. 如图,MON=90,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持没有变,其中AB=4,BC=2.运动过程中点D到点O的距离是_14. 如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_15. 如图,正方形CEGF顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的
6、面积是_三解 答 题(共5小题50分)16. 如图,在四边形中,.是四边形内一点,且.求证:(1);(2)四边形是菱形.17. 如图,在菱形ABCD中,对角线AC与BD交于点O过点C作BD平行线,过点D作AC的平行线,两直线相交于点E(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD面积是 18. 如图,已知ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD= 2,求AC的长19. 已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点(1)求证:BGFFHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD面积20. 如图,在中,过点的直线,为边上一点,过点作,交直线于,垂足为,连接、(1)当在中点时,四边形是什么四边形?说明你的理由;(2)当为中点时,等于 度时,四边形是正方形第6页/总6页