收藏 分享(赏)

基于单片机控制的交通灯毕业设计.doc

上传人:wo7103235 文档编号:371394 上传时间:2019-06-01 格式:DOC 页数:23 大小:1.46MB
下载 相关 举报
基于单片机控制的交通灯毕业设计.doc_第1页
第1页 / 共23页
基于单片机控制的交通灯毕业设计.doc_第2页
第2页 / 共23页
基于单片机控制的交通灯毕业设计.doc_第3页
第3页 / 共23页
基于单片机控制的交通灯毕业设计.doc_第4页
第4页 / 共23页
基于单片机控制的交通灯毕业设计.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、(产弁匀开剳弁亨弁产弁讀缁缀彮氀瀀螏頀h椀儁夃洃甃甃甃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鴃鼃蹗啎葧搀漀挀瀀椀挀最椀昀蹗啎葧搀漀挀尀尀戀愀搀愀昀愀攀搀昀昀昀挀戀搀愀樀瘀樀昀猀圀氀圀搀娀唀唀一焀瘀猀搀渀伀樀猀眀倀刀夀匀椀焀娀搀挀爀娀眀蹗唀撋挀戀昀昀搀挀戀昀昀攀W栀搀)昀眀漀螋鈀鄀2从弁吀4砀揀睄胔-v輀棙籀i缀$荍基于单片机的作息时间控制钟系统.docpic1.gif基于单片机的作息时间控制钟系统.doc2019-6147da28d2-bf74-44b8-bf5d-f003cd26e7a2Y4o/9oZ66UEV5kzBTdE4NNcJgle7OiCHYTwMPKxaserEw6x6dQ76bw=

2、基于,单片机,作息,时间,控制,系统87e9620e9f9c52006f54ee9f72ee1d9f瘀將尐wo71032350001700001毕业论文20190601133339847283J0稀(亝弁匀笀剶弁瀚亩弁亝弁讀缁缀斋瀀螏頀h谀椀會會會會會會會會會會會會會會會會會會椃漀祎蒋敶遧瀀搀昀瀀椀挀最椀昀漀祎蒋敶遧瀀搀昀尀尀挀戀愀戀戀昀搀愀戀攀猀琀攀瘀攀琀圀攀礀倀攀砀搀儀戀愀樀圀瀀搀砀栀猀倀一洀焀吀吀礀儀漀礀攀遧戀挀搀愀昀戀挀搀搀愀戀攀栀肕椀挀瘀7仑弁?:砀揀禜胔-輀棙i缀$【采矿安全】井下发生火灾时控制通风的软件程序.pdfpic1.gif【采矿安全】井下发生火灾时控制通风的软件程序.pd

3、f2019-61333824ce-c969-4d1a-a1d4-64998ddc4946aVz54PPg/DhBHDsJ7AWj8pI6amI+4Ja+D09dnNVz/PFlayqu+f57VA=采矿,安全,井下,发生,火灾,控制,通风,软件,程序b185a5125ac71bfa2d103bf0352133d6杨浈0001300005热门技术20190601184847509419?剷弁从弁尀亽弁讀缁缀盢瀀螏頀h梭緯$荌基于单片机的作息时间控制钟系统.docpic1.gif基于单片机的作息时间控制钟系统.doc2019-6147da28d2-bf74-44b8-bf5d-f003cd26e7

4、a2Y4o/9oZ66UEV5kzBTdE4NNcJgle7OiCHYTwMPKxaserEw6x6dQ76bw=基于,单片机,作息,时间,控制,系统87e9620e9f9c52006f54ee9f72ee1d9f瘀將尐wo71032350001700001毕业论文20190601133339847283J疂耀舀(宫D奭I学号 密级_武汉大学本科毕业论文基于 SVM 的变形监测预报研究院(系)名 称:测绘学院专 业 名 称 :测绘工程学 生 姓 名 :指 导 教 师 : 年 月II摘 要变形模型的分析研究以及变形预测是变形监测的重要内容,对于工程建筑物的安全施工以及运营有着重要意义。变形分析常

5、用的方法有回归分析法、时间序列法、灰色理论方法、人工神经网络模型法以及变形的组合分析方法。而支持向量机(Support Vector Machine,SVM)具有优良的非线性特性,已广泛的应用于统计分类以及回归分析中,目前也逐渐应用到测绘数据处理中。支持向量机是在统计学习理论的 VC 维理论和结构风险最小化原则的基础上提出的一种新的机器学习方法,它追求的是有限样本情况下的最优解而不仅仅是样本数趋于无穷大时的最优解,比起经验风险最小化为基础的神经网络学习算法具有更强的理论依据和泛化性能。本文结合了代表性的具体工程实例,从实际应用的角度进行计算分析,得到相应的变形分析模型并进行了变形的预测,而且与

6、传统的变形分析方法进行比较验证,总结出各种模型的优缺点和适用范围。结果表面,支持向量机回归模型计算精度较高。关键词:变形监测;统计学习理论;支持向量机;变形分析模型IIIABSTRACTThe analytical investigation of deformation model and deformation forecasting are a very important part of the deformation monitoring, which is very significant to the safe construction and operation of buil

7、ding engineering. The common methods of deformation analysis include regression analysis method, timeseries method, grey theory method, artificial neural network method and combined analysis method of deformation. The support vector machine(SVM) has excellent non-linear characteristics, the SVM is a

8、 supervised learning method and it has been widely used in statistical classification and regression analysis, the SVM is also gradually being applied to surveying and mapping data processing.Support Vector Machine(SVM)is a new kind of machine learning algorithm proposed recently which is based on V

9、C Dimension Theory and Structural Risk Minimization of Statistical Learning TheorySVM can obtain the optimum resultfrom the gained information which is not the optimum result only when the samples are infiniteSVM has much stronger theory foundation and better generalization than Neural Network which

10、 is based on Empirical Risk MinimizationAnd based on the (伨弁匀劄弁佄弁伨弁讀缁瀀螏頀h谀椀儁匃厃匃攃礃脃脃脃蹗碉佤葜扵搀漀挀瀀椀挀最椀昀蹗碉佤葜扵搀漀挀尀尀昀挀攀戀搀一猀漀漀匀娀礀伀最甀琀栀眀伀儀砀瀀夀眀嘀氀一攀漀搀焀樀伀伀焀稀最蹗碉佤扵戀挀昀愀攀攀挀昀攀昀搀挀挀m栀眀漀螋鈀鄀2佩弁簀4b蚀榠胔-怀抨b輀棙i缀$荇连锁便利店的营销策略分析.docpic1.gif连锁便利店的营销策略分析.doc2019-61386c3cb5-0db0-424b-bff4-e678826cad74agjZu39+nu8G9yxRVd8u/ohwxadZf

11、ZIh5YyOPUU5VlrBpy2ecRNGiA=连锁,便利店,营销,策略,分析dcefc355f750b30ff6b1f9d76dc79107戀嚮尽尾寎wo71032350001700001毕业论文20190601133348957359L0(伭弁匀吀劅弁佅弁伭弁讀缁瀀螏頀h椀唁椃榃椃洃脃褃褃褃魎邍瀀搀昀瀀椀挀最椀昀魎邍瀀搀昀尀尀搀戀攀挀昀搀愀挀吀嘀氀欀堀攀匀欀琀堀洀吀嘀搀堀挀栀堀刀嘀戀樀欀昀栀瘀戀吀攀漀漀愀琀猀最魎邍摨攀挀戀昀挀愀昀愀挀戀昀攀t栀u栀肕青葞嚕敻遒搀漀挀瀀椀挀最椀昀青葞嚕敻遒搀漀挀尀尀挀挀戀搀戀戀戀昀昀攀挀愀搀愀最樀娀甀渀甀礀砀刀嘀搀甀漀栀眀砀愀搀娀昀娀栀夀礀伀倀唀唀嘀氀爀

12、瀀礀攀挀刀一椀青嘀敻遒摧挀攀昀挀昀戀昀昀戀昀搀搀挀V栀稀眀漀螋椀挀瘀7佪弁渧B:弔裘櫌弔胔-輀棙籀h缀瀂嘃稃窃稃縃鈃騃騃騃吀瀀坥潺葾鹓瀀搀昀瀀椀挀最椀昀吀瀀坥潺葾鹓瀀搀昀尀尀挀攀搀戀戀戀挀攀挀攀戀愀最挀甀一稀嘀砀瘀吀瘀洀搀儀礀琀漀愀刀甀娀椀砀圀一娀洀氀嘀栀礀甀圀吀挀漀漀儀嘀眀吀瀀坥漀鸀捳搀昀昀戀戀愀挀昀攀戀昀戀挀栀6栀肕蘍怃娀椒舀餁屉騁屉焀退Z鈀鄀2佄弁64萨胔-輀棙h缀倁刃劃刃搃砃考考考蹗碉佤葜扵搀漀挀瀀椀挀最椀昀蹗碉佤葜扵搀漀挀尀尀昀挀攀戀搀一猀漀漀匀娀礀伀最甀琀栀眀伀儀砀瀀夀眀嘀氀一攀漀搀焀樀伀伀焀稀最蹗碉佤扵戀挀昀愀攀攀挀昀攀昀搀挀挀m栀眀漀螋鐀椀挀瘀7佅弁A:蕔胔-輀棙籀h缀吁栃梃栃氃考蠃蠃蠃魎邍瀀搀昀瀀椀挀最椀昀魎邍瀀搀昀尀尀搀戀攀挀昀搀愀挀吀嘀氀欀堀攀匀欀琀堀洀吀嘀搀堀挀栀堀刀嘀戀樀欀昀栀瘀戀吀攀漀漀愀琀猀最魎邍摨攀挀戀昀挀愀昀愀挀戀昀攀t栀u栀肕鈀鄀2佩弁簀4b蚀榠胔-怀抨b輀棙h缀堃氃球球球鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鰃鸃青葞嚕敻遒搀漀挀瀀椀挀

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 学术论文 > 毕业论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报