1、三角形全等的判定同步练习题一. 选择题1. 下列条件不能判定两个三角形全等的是( )A. 有两边和夹角对应相等B. 有三边分别对应相等C. 有两边和一角对应相等D. 有两角和一边对应相等2. 下列条件能判定两个三角形全等的是( )A. 有三个角相等B. 有一条边和一个角相等C. 有一条边和一个角相等D. 有一条边和两个角相等3. 如图所示,已知ABCD,ADBC,那么图中共有全等三角形( )A. 1对B. 2对C. 4对D. 8对4. 如图所示,已知AD,12,那么要得到ABCDEF,还应给出的条件是( )A. EBB. EDBCC. ABEFD. AFCD5. 如图所示,点E在ABC外部,点
2、D在BC边上,DE交AC于F,若12,EC,AEAC,则( )21cnjyA. ABCAFEB. AFEADCC. AFEDFCD. ABCADE6. 我们学过的判定两个直角三角形全等的条件,有( )A. 5种B. 4种C. 3种D. 2种7. 如图所示,ABEFCD,ABC90,ABDC,那么图中的全等三角形有( )A. 1对B. 2对C. 3对D. 4对8. 如图,在ABC中,ABAC,ADBC,垂足为D,且BC6cm,则BD_. ( )【来源:21世纪教育网】A. 1cmB. 2cmC. 3cmD. 4cm9. 如图所示,DEAB,DFAC,AEAF,则下列结论成立的是( )A. BDC
3、DB. DEDFC. BCD. ABAC二. 填空题10. 如图所示,ACBD,ACBD,那么_,理由是_. 11. 已知ABCABC,AB6cm,BC7cm,AC9cm,A70,B80,则AB_,BC_,AC_,C_,C_. www-2-1-cnjy-com12. 如图所示,已知ABAC,在ABD与ACD中,要使ABDACD,还需要再添加一个条件是_. 21*cnjy*com13. 如图所示,已知ABCDEF,AB4cm,BC6cm,AC5cm,CF2cm,A70,B65,则D_,F_,DE_,BE_. 【出处:21教育名师】14. (2007年福州)如图,点D、E分别在线段AB、AC上,B
4、E、CD相交于点O,AEAD,要使ABEACD,需添加一个条件是_(只要求写一个条件). 21教育网15. (2007年沈阳)如图,AC、BD相交于点O,AD,请你再补充一个条件,使得AOBDOC,你补充的条件是_. 2-1-c-n-j-y三. 解答题16. (2007年浙江温州)已知:如图,12,CD,求证:ACAD. 17. (2007年浙江金华)如图,A、E、B、D在同一直线上,在ABC和DEF中,ABDE,ACDF,ACDF. (1)求证:ABCDEF;(2)你还可以得到的结论是_(写出一个即可,不再添加其他线段,不再标注或使用其它字母)21世纪*教育网18. (2007年武汉)你一定
5、玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直. 当一方着地时,另一方上升到最高点. 问:在上下转动横板的过程中,两人上升的最大高度AA、BB有何数量关系?为什么?21教育名师原创作品19. MN、PQ是校园里的两条互相垂直的小路,小强和小明分别站在距交叉口C等距离的B、E两处,这时他们分别从B、E两点按同一速度沿直线行走,如图所示,经过一段时间后,同时到达A、D两点,他们的行走路线AB、DE平行吗?请说明你的理由. 21*cnjy*com20. 有一块不规则的鱼池,下面是两位同学分别设计的能够粗略地测量出鱼池两端A、B的距离的方案,请你分析一下两
6、种方案的理由. 方案一:小明想出了这样一个方法,如图所示,先在AB的垂线BF上取两点C、D,使CDBC,再定出BF的垂线DE,使A、C、E在同一条直线上,测得DE的长就是AB的长. 你能说明一下这是为什么吗?方案二:小军想出了这样一个方法,如图所示,先在平地上取一个可以直接到达鱼池两端A、B的点C,连结AC并延长到点D,使CDCA,连结BC并延长到E,使CECB,连结DE,量出DE的长,这个长就是A、B之间的距离. 你能说明一下这是为什么吗?21. 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?www.21-cn-(1)阅读与证明:对于这两个
7、三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:ABC、A1B1C1均为锐角三角形,ABA1B1,BCB1C1,CC1. 求证:ABCA1B1C1. (请你将下列证明过程补充完整)证明:分别过点B,B1作BDCA于D,B1D1C1A1于D1. 则BDCB1D1C190,BCB1C1,CC1,BCDB1C1D1,BDB1D1. _。(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论. 【试题答案】1. C2. D3. C4. D5. D6. A7. C8. C9. B21世纪
8、教育网版权所有10. AOCBOD;AAS或ASA11. 6cm 7cm 9cm 30 3012. BDCD或BADCAD13. 70 45 4cm 2cm14. BC、AEBADC、CEOBDO、ABAC、BDCE(任选一个即可)15. AODO或ABDC或BOCO16. 证ACBADB17. (1)证明:ACDF,AD,在ABC和DEF中,ABCDEF(SAS)21cnjycom(2)答案不唯一,如:AEDB,CF,BCEF等. 18. 答:AABB,证AAOBBO19. 平行. 理由如下:由已知条件得,ABDE,BCCE,在RtABC和RtDCE中,RtABCRtDCE(HL),ABCD
9、EC,ABDE. 20. 小明的做法有道理,其理由如下:因为ABBF,DEBF,所以ABCEDC,又因为A、C、E三点在同一条直线上,所以ACBECD,且BCDC,所以ABCEDC(ASA),所以ABDE(全等三角形的对应边相等). 小军的做法有道理,其理由如下:因为在ABC和DCE中,CDCA,ACBDCE(对顶角相等),CEBC,所以ABCDEC(SAS),所以ABDE(全等三角形的对应边相等). 【来源:21cnj*y.co*m】21. (1)又ABA1B1,ADBA1D1B190,ADBA1D1B1,AA1,又CC1,BCB1C1,ABCA1B1C1(2)若ABC、A1B1C1均为锐角三角形或均为直角三角形或均为钝角三角形,ABA1B1,BCB1C1,CC1,则ABCA1B1C1.【版权所有:21教育】