收藏 分享(赏)

391-沟通管理学(DOC 35页).doc

上传人:黄嘉文 文档编号:2373024 上传时间:2020-07-10 格式:DOC 页数:35 大小:180KB
下载 相关 举报
391-沟通管理学(DOC 35页).doc_第1页
第1页 / 共35页
391-沟通管理学(DOC 35页).doc_第2页
第2页 / 共35页
391-沟通管理学(DOC 35页).doc_第3页
第3页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、钢结构工程施工组织设计目录1、编制说明32、工程概况33、施工准备计划44、施工总体部署55、主要分部分项施工方法76、主要技术措施167、质量保证体系及措施188、工期进度安排及保证措施209、安全保证措施2010、文明施工保证措施2411、附图、附表25 1、编制依据本工程施工组织设计编制依据如下:1、上海林彬塑料制品有限公司1#生产车间工程施工组织设计是根据下列文件、图纸、工程法规、质量检验评定标准等依据编制而成。(1)上海劲松建筑设计事务所设计的1#生产车间工程施工图纸;(2)施工现场实地踏勘;(3)国家有关建筑工程法规、规范与文件;(4)建筑施工安全检查标准JGJ5999;(5)本公

2、司ISO9002国际质量体系、质量手册、程序文件、技术标准及拥有的技术力量;2、本施工组织设计遵守的有关规范、标准:(1)工程测量规范GB500262001;(2)钢结构设计规范GBJ500172002;(3)钢结构工程施工及规范GB502052001;(4)建筑钢结构焊接规程JGJ8191;(5)钢焊缝手工超声波探伤方法和探伤结果分级GB1154589;(6)涂装前钢材表面锈蚀等级和除锈等级GB892388;(7)低合金钢焊条GB511885;(8)碳钢焊条GB511785;(9)建筑施工安全检查评分标准JGJ5999;(10)建筑施工高处作业安全技术规范JGJ8091;(11)建筑机械使用

3、安全技术规程JGJ3386;(12)施工现场临时用电安全技术规范JGJ4688;(13)门式刚架轻型房屋钢结构技术规程CECS102:2002。2、工程概况本工程为上海林彬塑料制品有限公司1#生产车间工程,为全钢结构框架,建筑总长90米,宽为24米,檐口高度为6米,建筑面积:2250平方米。基础:本工程为钢筋混凝土独立基础;结构:本工程为轻钢结构,采用刚架柱H350-750220810和刚架梁H350-750220810,H300220610建筑物所用的钢材为Q345B。钢柱为焊接H型柱,钢梁为焊接H型钢梁,屋面为mm压型彩钢板,外墙面为mm压型彩板;檩条和墙梁采用Q235,C18070202

4、.5薄壁型钢;钢板天沟采用3mm厚的钢板,内外进行红丹漆防锈处理。本工程施工范围:上海林彬塑料制品有限公司1#生产车间工程的钢结构系统的制作与现场安装施工以及保修。3、施工准备计划3.1施工技术准备:积极组织技术人员认真审阅图纸,做好图纸设计交底和技术交底的准备工作,备齐工程所需的资料和标准图集,编制施工图预算和分部工程材料计划以及劳动力需求计划和工机具的需要情况。向施工人员进行施工组织设计和技术交底,把工程的设计内容、施工计划和施工技术要求等,详尽的向施工人员讲解清楚,落实施工计划,制定技术责任制的必要措施。做好现场定位桩的测设工作,完成工程的定位放线工作等。3.2物资的准备:根据施工预算和

5、分部分项工程施工方法和施工进度的安排,组织货源,确定加工、供应地点和供应方式,签订物资供货合同。根据各种物资的需要量计划和合同,拟定运输计划和运输方案。按照施工总平面图的要求,组织物资按计划时间进场,在指定地点,按规定方式进行储存和保管。3.3劳动力等组织准备:成立以项目经理为领导的项目经理部的组织机构(组织机构图见附表11),建立健全各项规章管理制度,确定劳动组织的领导机构名额和人选,坚持合理分工与密切协作相结合的原则,把有施工经验、有创业创新精神、工作效率高的人选入领导机构。建立精干的施工队伍,要认真考虑专业工种的合理配合,技工和普工的比例要满足合理的劳动组织要求,按组织施工方式的要求确定

6、建立混合施工队组或专业施工队组及其数量。按照开工日期和劳动力需要量计划,组织劳动力进场,同时要进行安全、防火和文明施工等方面的教育。在钢结构工程施工前,应对各工序的施工人员进行必要的岗位培训,并对其进行技术、质量、安全交底,预防发生安全和质量事故。为了加快施工准备工作的进度,必须加强建设单位、设计单位和监理单位之间的协调工作,密切配合,建立健全施工准备工作的责任制度和检查制度,使施工准备工作由领导、有组织、有计划和分期分批地进行。对钢结构工程所使用的机械和检测设备的性能进行检验,保证施工过程中各种设备的工作状态良好,使用功能齐全。主要施工人员表机构 项目部成员 姓名 职务 职称 主要资历、经验

7、及承担过的项目项目部 项目经理 项目经理 工程师 技术负责人 技术负责人 工程师 施工负责人 施工负责人 工程师 质检员 质检员 工程师 安全员 安全员 工程师 施工员 施工员 工程师 材料员 材料员 工程师 预算员 预算员 工程师 主要劳动力计划表序号 工种 人数 备注 序号 工种 人数 备注1 下料工 2 2 组立工 2 3 矫正工 2 4 机修工 1 5 电焊工 5 6 安装工 14 7 钻孔工 1 8 架子工 1 9 喷漆工 2 10 杂工 2 4、施工总体布署为了合理地安排,组织好施工,根据本工程自身的特点,结合实际情况,本工程流水法施工。即:在施工上海林彬塑料制品有限公司1#生产车

8、间工程基础的同时开始加工制作钢结构(钢柱、钢梁、钢檩条等)。钢结构采取分批分段施工。4.1任务安排:钢结构部分由专业施工钢结构的安装施工队伍施工。4.2施工布署:本工程施工包括施工准备(见施工准备工作计划)及钢结构施工两个阶段。4.2.1施工准备阶段:包括施工现场准备、技术准备、材料准备、劳动力和工机具准备,均在工程开工之前完成。4.2.2钢结构施工阶段:包括钢结构加工制作、运输、吊装、安装、校正、涂刷油漆、安装彩钢板等,均组织好流水施工。4.3施工顺序和进度计划:本工程遵循“先地下、后地上;先结构、后装修”的原则安排施工。4.3.1本工程施工顺序如下:钢结构部分:材料检验材料矫直放样号料切割

9、加工(矫正、成型、制孔)-对接(焊接)-X光检验校正组装焊接校正划线制孔除锈试装装配质量检验-涂层-编号、发送现场检验单片现场组装钢柱吊装水平支撑吊装-钢屋架吊装钢檩条吊装斜支撑安装拉条安装校正补漆天沟安装中间验收墙面彩钢板安装屋面板安装门窗安装验收。4.4本工程施工进度计划(见工程进度计划表)。4.5施工平面布置图(具体平面布置见施工总平面布置图).4.主要施工机械的选择:主要施工机械设备一览表序号 机械设备名称 规格型号 数量 功率(KW) 备注1 型钢自动组立机 1台 5.5 钢结构焊接2 H型钢矫正机 1台 5 钢结构焊接3 气割枪 J01-30 2套 钢结构焊接4 台式砂轮切割机 S

10、3SL-250 2台 2.2 切割钢材5 门式自动埋弧焊机 MZG-z*1000 1组 10.2 钢结构焊接6 八头抛丸除锈机 DG*90*180 1组 94.6 钢结构焊接7 数控多头直条切割机 3000B 1组 9.4 钢板切割8 全自动彩板复合机 XBJ-V1 1组 彩钢板制作9 数控平面钻床 1台 钢构件钻孔10 压型机 HV-200 1台 4.2 彩钢板制作11 水准仪 TGJ-1000 1台 测量、校正12 经纬仪 J6 1台 测量、校正13 移动式卷扬机 1台 7.5 吊装14 吊车 LDA 2辆 18t 吊装钢结构15 交流电焊机 AX4-300-1 4台 15 钢结构焊接16

11、 手推车 自制 4部 运输17 剪板机 1台 彩钢板制作18 扭矩扳手 6把 紧固螺栓、主要分部分项工程施工方法5.1钢结构加工制作:5.1.1材料检验:钢结构制作与安装需用的钢材,必须由供应部门提供合格证明及有关技术文件。钢结构所用钢材的质量必须严格遵守国家有关的技术标准、规范和设计要求的规定。并按照有关的实验操作规程进行试验,提出准确可靠的数据,确保工程质量。配件、连接材料(焊条、焊丝和焊剂,高强度螺栓、普通螺栓及铆钉等)和涂料均应具有质量合格证,并应符合设计要求和现行国家技术标准的规定。5.1.2材料矫正:钢结构制作工艺中矫正是关键的工序,是确保钢结构制作质量重要环节。对于各种型材,如变

12、形超标,下料前应以矫正。制作钢结构的钢材矫正应用平板机、型钢矫直机矫正和人工矫正,矫正后钢材表面,不应有明显的凹面或损伤,划痕深度不大于0.5mm。人工矫正钢板时,应根据变形情况,确定锤击顺序。5.1.3放样:5.1.3.1放样前应该核对施工图、熟悉工艺标准、掌握各部件的精确尺寸严格控制尺寸伖伖伖倖#倖伀倖倖瘀倖倖倖儖#儖儖儖儖嬀儖崀儖儀儖蜀儖嬀儖儖儖耀儖儖儖一儖儖嘀儖圀儖贀儖儖簀儖紀儖儖儖儖儖儖儖輀儖儖谀儖稀儖儖倀儖儖鬀儖儖儖礀儖儖儖儖儖儖儖堀儖尀儖樀儖儖儖儖儖儖儖儖儖漀儖儖一儖退儖茀儖儖儖茀儖儖匀儖儖儖椀儖儖儖嬀儖儖頀儖儖氀儖謀儖儖儖儖簀儖儖儖儖儖儖儖欀儖鬀儖儖儖焀儖儖儖儖开儖儖儖儖儖儖儖

13、儖儖耀儖漀儖儖儖儖儖踀儖儖儖儖愀儖琀儖茀儖漀儖儖儖脀儖儖洀儖儖椀儖儖儖刀儖渀儖儖儖漀儖儖儖需儖儖儖儖輀儖儖言儖簀儖儖儖儖儖儖儖儖氀儖儖夀儖儖蘀儖儖儖儖儖嬀儖儖娀儖茀儖儖儖儖儖儖鄀儖儖儖儖嘀儖耀儖儖儖砀儖儖鼀儖儖刖#刖#刖#儖儖儖儖帀儖爀儖儖鄀儖儖儖踀儖儖儖儖踀儖儖儖儖耀儖儖儖儖儖儖儖儖儖儖儖儖儖儖儖儖儖焀儖琀儖儖儖儖儖儖儖儖儖儖儖儖儖紀儖儖儖儖儖蜀儖頀儖爀儖谀儖嘀儖儖儖儖鼀儖谀儖挀儖簀儖阀儖儖儖阀儖鄀儖儖儖儖儖脀儖儖儖儖嘀儖儖儖儖儖儖儖儖昀儖搀儖儖儖儖儖脀儖儖儖儖謀儖儖儖儖儖儖褀儖言儖儖儖儖儖樀儖儖儖儖猀儖儖鬀儖儖儖嘀儖堀儖儖儖贀儖輀儖儖儖儖儖儖儖儖儖謀儖儖攀儖脀腕鎇唿醸!怀艁縃烓芹吿腔鎇吿醸

14、2鎂嬿醸!瀀艁縄俴蟮嬿腛w艁縃叿舖腉餀鎇醸!耄佌艍樿艕鎇唿倰醸!醸!艁考秸苑丿腎İ鎇丿醸!艁舃與刿腒鎇刿醸!艁茄會般腊艁范會蜬腊鎂圿醸!艁萃锥蜀圿腗喆鎂刿醸!鄀喆鎇刿醸!怀蠅艨欿艟醸!艁蠄苅伿腏艁蠄蟅伿腏蠆俅苮瀿葬怀鎇氿醸蠊駅艰琿虎醸!醸刡鄀倀倰炙鎇丿倰鄐鬀爡羉襛鎂爿醸!艁褃孿螉爿腲暊鎂渿醸!鎂刿醸!瀀艁訃螿刿腒鎂醸!瀀艁謃务蜒腋啟鎂弿啟鎇弿腰鎂吿醸!鎇吿醸1鎂餀醸!脀脐怐謊设螡猿衉醸刡鬐怀恰酐艁謄貿興昿腦艁謃貿蜈昿腦晎鎂樿醸!怀艁謃更与蝦樿腪鎂琿醸!艁调砃蜔琿腴İ鎂崿醸!艁调謃蟕崿腝鎂圿醸!艁贃刢螡圿腗İ鎂醸!倀艁贃鄨蟏腋榏鎂吿醸!榏鎇吿醸1鎂嘿醸!倀艁較廁苺娿腚鎇娿醸!逅眚若嘿艌鄀醸!逆眚

15、蟥嘿艌鄀鎂嬿醸!倀艁逃輟螾嬿腛亐鎂渿醸!倀艁逃蝎渿腮İ厐鎂醸!艁逃赓蟯腉餀鎂醸!艁逃巑蟞腉餀鎂唿偐醸!醸!艁逃俨艍腋鎇醸!艁逃门艿昿腦羕鎇昿醸!艁鄃跇舭唿腕鎇唿醸!倀艁鄃烍芹腋鎇醸!艁鄄苏朿腧艁鄅蟏朿腧襰鎂崿醸!艁锃瀅螉崿腝厐鎂尿醸!艁阃邧蝓尿腜鎂醸!艁阃囆苢甿腵İ鎇甿醸2店鎂醸!艁頃艧朿腧枘鎇朿醸2疘鎂甿醸!疘鎇甿醸1禘鎂嘿İ禘鎇嘿醸!醸!艁頃箄芗漿腯蒘靻鎇漿醸!項宆苼嘿艌怀醸!順宆蟼嘿艌栀鄐垚鎂渿醸脀İ垚鎇渿醸!怀艁騃郘舟爿腲鎇爿醸!倀鎂T褁謐|鄠鄐舐欀蟿甿吀鐀醸醸醸簐腰怐鄐瀐腠偠怠魏netic trees, thus allowing the direct assignment and

16、visu- alization of T-RFs specifi c to phylogenetic groups (Fig. 1A). In conclusion, TRF-CUT is suitable for (i) T-RF prediction based on various enzymes to select enzymes with high phylogenetic resolutionand(ii)assigningT-RFsfromexperimental T-RFLP data to potentially corresponding sequences in the

17、database. As an example, we applied TRF-CUT to evaluate the com- munity structure of methanotrophic bacteria (MB) in a pH- neutral upland soil located near Go ttingen, Germany. MB play a crucial role in the global carbon cycle. The initial oxidation of methane to methanol is catalyzed by either a pa

18、rticulate meth- ane monooxygenase (pMMO) or a soluble methane monoox- ygenase. The membrane-bound form, pMMO, occurs in al- most all known MB and is homologous to the ammonium monooxygenase of ammonia-oxidizing bacteria. The pmoA gene encodes the catalytic center of pMMO and is widely used as a func

19、tional marker in environmental studies (4, 9, 10). Its application to study MB communities in a variety of methane- consuming upland soils indicated that two novel pmoA se- quence clusters, USC? and USC?, were dominant (7, 9). Re- cently, novel MB belonging to the ? subgroup of the class Proteobacte

20、ria but harboring pmoA sequences only distantly * Corresponding author. Mailing address: Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany. Phone: 49 6421/178733. Fax: 49 6421/178999. E-mail: brakerstaff.uni-marburg.de. 1671 FIG. 1. (A) Phylogeny of p

21、moA sequences and corresponding T-RFs predicted by in silico analysis through TRF-CUT. The tree is slightly modifi ed from the ARB display. The tree was calculated from 127 deduced amino acid positions by the tree puzzle, maximum-likelihood, and neighbor-joining methods. Ten thousand puzzling steps

22、were performed, and probability estimates (?60%) are given as percentages at nodes. Accession numbers are in parentheses. Thickened nodes were common to both maximum-likelihood and neighbor-joining analyses. Dashed vertical lines (polytomies) indicate unresolved branching, which was inferred from co

23、nfl icting results of the phylogenetic analyses and low (?60%) tree puzzle support values. The scale bar indicates 10% sequence divergence. T-RF lengths after MspI and HaeIII in silico hydrolysis are given by numbers following the enzyme names; no, no restriction site within the analyzed pmoA fragme

24、nt; SeqGaps 0, no gap; another number following SeqGaps indicates the size of the gap between the priming site and the start of the actual sequence. (B) T-RFs retrieved from a pH-neutral temperate forest soil by T-RFLP with MspI and HaeIII. Lengths of T-RFs represented by pmoA clones are indicated.

25、Values in parentheses are the relative contributions of the T-RFs to the total sample fl uorescence. x axis, size of T-RFs in base pairs; y axis, relative fl uorescence units. 1672 related to known pmoA genes (here referred to as cluster I) were isolated from a tundra soil (13). However, in contrast

26、 to USC? and USC?, information on the distribution of this clus- ter is very limited. Community analyses of MB by T-RFLP have been per- formed mainly by MspI hydrolysis of 6-carboxyfl uorescein-la- beled pmoA PCR products (6), which were amplifi ed with the primers A189f and A682r (5). The applicati

27、on of this primer- enzyme combination as described by Horz et al. (6) to the Go ttingen forest soil sample resulted in four major peaks with one dominant T-RF of 80 bp (57%) (Fig. 1B). Application of TRF-CUT to a database including all public-domain pmoA and amoA sequences (June 2004) revealed that

28、the 80-bp T-RF was indicative for an environmental sequence from an upland soil (E33b-a, cluster I) and for Methylobacter sp. LW12. A 79-bp T-RF, which is experimentally diffi cult to distinguish from the 80-bp T-RF, corresponded to several taxa. Since the MspI hydrolysis did not resolve the MB comm

29、unity structure in this soil properly, we cloned PCR products and sequenced 13 environmental pmoA genes. Reconstruction of the gene phylogeny showed that the majority of sequences (11) were affi liated with cluster I sequences (Fig. 1A). Only two clones clustered with amoA genes (clone 25) and envir

30、onmental clus- ter II sequence E5FB-f (clone 10 9), respectively. The lack of clones affi liated with any other group of MB suggested a dom- inance of cluster I pmoA sequences in this pH-neutral temper- ate forest soil. On the basis of these fi ndings, we applied TRF-CUT to test various restriction

31、endonucleases in order to select one that allowed the discrimination of cluster I sequence types from all other pmoA and amoA genes. In silico digestion with HaeIII revealed a 199-bp fragment unique to the majority of cluster I sequences (Fig. 1A). For two cluster I sequences, TRF-CUT indicated equa

32、lly unique T-RFs of 140 and 316 bp, respec- tively. Subsequent T-RFLP analysis of pmoA amplifi ed from the soil DNA extract indeed showed a predominance of a 199-bp T-RF when HaeIII was used for digestion (87.0%), thus confi rming the predicted result. An additional 406-bp T-RF corresponded exclusiv

33、ely to the pseudo-T-RF of cluster I se- quences (3). Summing up the relative abundance of these two peaks, cluster I MB comprised 93.0% of the detected MB community. Peaks of the predicted sizes of 140 and 316 bp for cluster I, of 225 bp for cluster II, and of 45 bp for clones affi liated with ammon

34、ia-oxidizing bacteria were all relatively small (?1.0%) or undetected, indicating that organisms with these genotypes were only minor constituents of the meth- anotrophic guild in this forest soil. In summary, application of TRF-CUT prior to T-RFLP analysis revealed cluster I as the predominant MB i

35、n this pH-neutral methane-consuming soil and indicated that the dis- tribution of this novel gene cluster is more widespread than previously known. In this study, a clone library was necessary because of the limited availability of pmoA sequences from different habitats. However, with the prerequisi

36、te of an exten- sive data set, in silico predictions of multiple-enzyme digests should allow assignment of T-RFs to potentially corresponding organisms without extensive prior cloning efforts. We acknowledge Peter F. Dunfi eld for critically reading the manu- script. This work was fi nancially suppo

37、rted by the German Federal Ministry of Education and Research within the Competence Network Go ttin- gen project “Genome Research on Bacteria” (GenoMik) and the BIO- LOG Biodiversity Program (01LC0021) and by grants from the Max Planck Society (Munich). REFERENCES 1. Avrahami, S., R. Conrad, and G. Braker. 2002. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifi ers. Appl. Environ. Microbiol. 68:56855692. 2. Braker, G., H. L. Ayala-del-Rio, A. H. Devol, A. Fesefeldt, and J. M. Tiedje. 2001. Community structure of denitrifi er

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他文案

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报