1、.;概率论与统计原理复习资料一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为 、 、 、 、 、 。参考答案:B(A+C,AB+AC+BC,A +B+C,+,AB+AC+BC,+考核知识点:事件的关系及运算2、从0,1,2,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为 、 、 。参考答案:0.04,0.02,0.1 考核知识点
2、:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为 ,恰好有2枚正面向上的概率为 。参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为 。参考答案:0.6 考核知识点:古典型概率5、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利510万元的概率为 ,获利1015万元的概率为 。参考答案:0.2,0.4考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。用不放回两种方法取球,则取到的两个球都是白球的概率为 ;取到的两个球颜色相
3、同的概率为 ;取到的两个球中至少有一个是白球的概率为 。参考答案:0.4,7/15,14/15 考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= 0.6,P(B)= 0.3,则P(A+B)= ;P(+B)= ;P(B)= ;P()= 。参考答案:0.9,0.4,0.3,0.1 考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为 ;至少有一人中靶的概率为 。参考答案:(1)0.26;(2)0.96考核知识点:事件的独立性9、每次试验的成功率为p(0 p 1),则在5
4、次重复试验中至少成功一次的概率为 。参考答案:考核知识点:事件的独立性10、设随机变量XN(1,4),则P0 X1.6= ;PX1= ;PX=x0= 。参考答案:0.3094,0.5,0考核知识点:正态分布,参见P61;概率密度的性质11、设随机变量XB(n,p),已知EX=0.6,DX=0.48,则n = ,p = 。参考答案:3,0.2考核知识点:随机变量的数学期望和方差 12、设随机变量X服从参数为(100,0.2)的二项分布,则EX= , DX= 。参考答案:20,16考核知识点:随机变量的数学期望和方差 13、设随机变量X服从正态分布N(-0.5,0.52),则EX2= ,D(2X-
5、3)= 。参考答案:0.5,1考核知识点:随机变量的数学期望和方差及其性质 14、设由来自正态总体的容量为9的简单随机样本,得样本均值=5,则未知参数的最大似然估计值为 ,的置信度为0.95的置信区间为 。参考答案:5,(-0.88,10.88)考核知识点:正态总体参数的极大似然估计以及区间估计15、设由来自正态总体的容量为25的简单随机样本,得样本均值=15,则未知参数的最大似然估计值为 ,的置信度为0.95的置信区间长度为 。参考答案:15,7.84考核知识点:正态总体参数的极大似然估计以及区间估计16、从自动车床加工的一批零件中随机抽取了16件,测得零件长度的平均值为2.125cm,标准
6、差为0.017cm。假设零件的长度服从正态分布,则零件长度均值的点估计值为 ;零件长度标准差的点估计值为 ;零件长度标准差的0.95置信区间为 。参考答案:2.125,0.017,(0.0126,0.0263)考核知识点:正态总体标准差的点估计以及区间估计17、设总体X服从正态分布,从X中随机抽取一个容量为36的样本,设为样本均值,S2为样本方差。当总体方差2已知时,检验假设H0:=0的统计量为 ,当总体方差2未知时,检验假设H0:=0的统计量为 。参考答案:,考核知识点:正态总体均值的假设检验18、设总体X服从正态分布,从X中随机抽取一个容量为n的样本,设S2为样本方差,则检验假设H0:的统
7、计量为 。参考答案:考核知识点:正态总体方差的假设检验19、假设检验时若增大样本容量,则犯两类错误的概率都将 。参考答案:减少考核知识点:假设检验的两类错误20、设随机变量X在区间1,3 上服从均匀分布,则X的概率密度函数为 ;事件 -0.5X1.5的概率为 参考答案:,0.25考核知识点:连续型随机变量的密度函数和概率21、设随机变量XB(3,0.2),则EX= ,DX= 。参考答案:0.6,0.48考核知识点:二项分布的数字特征22、总体X服从正态分布N(,2),从X中随机抽取一个容量为n的样本,为样本均值,S2为样本方差。当总体方差2已知时,假设H0:=0的检验统计量为 ,当总体方差2未
8、知时,假设H0:=0的检验统计量为 。参考答案:,考核知识点:假设检验23、对于随机试验:观察一台电脑的使用寿命,则其样本空间可表示为 ;事件“使用寿命超过600小时”可表示为 。参考答案:(0,+);(600,+)考核知识点:随机试验的样本空间24、设随机变量X的概率密度为,则常数A= ,P()= ,X的分布函数F(x)= 。参考答案: 1,0.5,考核知识点:连续型随机变量的分布函数25、对于随机试验:记录一段时间内某城市110报警次数,则其样本空间可表示为 ;事件“报警次数小于5次”可表示为 。参考答案:0,1,2,;0,1,2,3,4考核知识点:随机试验的样本空间26、同时抛掷3枚均匀
9、的硬币,则恰好有2枚正面都向上的概率为 ,至少有1枚正面向上的概率为 。参考答案:3/8,7/8考核知识点:古典概率27、从0,1,2,9这10个数中可重复取两个数组成一个数码,令X为两个数之和,则PX3 。参考答案:0.04考核知识点:古典概率28、每次试验的成功率为p(0 p 1),则在3次重复试验中至少失败一次的概率为 。参考答案:考核知识点:古典概率29、在假设检验中,一般情况下会犯 错误。参考答案:第一类错误和第二类错误考核知识点:假设检验30、袋中有50个球,其中有20个是红球,其余为白球,不放回抽样从中任取3次,一次取一个球,则第5次取到红球的概率为 。参考答案:0.4考核知识点
10、:古典概率31、设随机变量X在区间2,7 上服从均匀分布,则随机变量X的概率密度函数为 ;随机变量X的分布函数为 ;P-0.5X2.5= 。参考答案:,0.1考核知识点:连续型随机变量的性质32、设随机变量X服从参数为(100,0.4)的二项分布,则EX= , DX= 。参考答案:40,24考核知识点:二项分布的数字特征33、设由来自正态总体的容量为25的简单随机样本,得样本均值=5,则未知参数的最大似然估计值为 ,的置信度为0.95的置信区间长度为 。参考答案:5,7.84考核知识点:正态分布的估计值和置信区间34、在假设检验中,第一类错误是指 。参考答案:原假设本来正确,却被错误地拒绝了考
11、核知识点:假设检验35、袋中有100个球,其中有30个是红球,其余为白球,不放回抽样从中任取4次,一次取一个球,则第二次取到红球的概率为 。参考答案: 0.3考核知识点:古典概率36、设随机变量X在区间2,6 上服从均匀分布,则随机变量X的概率密度函数为 ;随机变量X的分布函数为 ;P-0.5X2.5= 。参考答案: ,0.125考核知识点:连续型随机变量的概率37、设随机变量X服从参数为(10,0.6)的二项分布,则EX= , DX= 。参考答案: 6,2.4考核知识点:二项分布的数字特征38、设由来自正态总体的容量为25的简单随机样本,得样本均值=5,则未知参数的最大似然估计值为 ,的置信
12、度为0.95的置信区间为 。参考答案: 5,(1.472,8.528)考核知识点:正态分布的估计值和置信区间二、单项选择题1、下列数字中不可能是随机事件概率的是( )。A- 1/3 B0 0.3 1参考答案:A考核知识点:概率的公理化定义2、某产品共有10件,其中3件为次品,其余为正品。用不放回方法从中任取两次,一次一件,则第二次取到的是正品的概率为( )。 A B C D 参考答案:B考核知识点:古典型概率3、设某厂的甲、乙、丙三个车间生产同一种产品,记A1为“产品是由甲车间生产的”, A2为“产品是由乙车间生产的”, A3为“产品是由丙车间生产的”, B为“产品是次品”。今从即将出厂的该种
13、产品中任取一件,则取到的是甲车间生产的次品的概率为( )。AP (A1) BP () CP () DP (A1B)参考答案:D考核知识点:概率的表示与条件概率4、设某厂的甲、乙、丙三个车间生产同一种产品,记A1为“产品是由甲车间生产的”, A2为“产品是由乙车间生产的”, A3为“产品是由丙车间生产的”, B为“产品是次品”。今从次品中任取一件,则它是由甲车间生产的的概率为( )。AP (A1) BP () CP () DP ()参考答案:D考核知识点:概率的表示与条件概率5、任何连续型随机变量的概率密度f (x) 一定满足( )。A B在定义域内单调不减 C在定义域内右连续D 参考答案:D考
14、核知识点:概率密度的性质6、设随机变量XN(2,1002),且P0X4=0.3,则PX0=( )。A0.25 B0.35 C0.65 D 0.95参考答案:B考核知识点:正态分布7、设X是随机变量,x0为任意实数,EX是X的数学期望,则( )。A BC D参考答案:B考核知识点:方差的性质8、设假设总体X服从参数为p(0p1)的0-1分布,p未知。(X1,X2,X5)是来自X的简单随机样本,则下面的( )是统计量。AX1+pX3 BX5+2p(X5 -X2) Cmin(X1,X2,X5) DX2-EX4 参考答案:C考核知识点:统计量的定义9、设总体X的均值与方差都存在,且均为未知参数,而为该
15、总体的一个样本,则总体均值的矩估计量为()ABC D参考答案:A考核知识点:参数的矩估计10、设总体X的均值与方差都存在,且均为未知参数,而为该总体的一个样本,则总体方差的矩估计量为()。ABC D参考答案:B考核知识点:参数的矩估计11、从估计量的有效性是指( )。A估计量的抽样方差比较小 B估计量的抽样方差比较大C估计量的置信区间比较宽 D估计量的置信区间比较窄参考答案:A考核知识点:评价估计量的标准12、在一次假设检验中,当显著性水平为0.01时原假设被拒绝。当显著性水平为0.05时,则( )。A可能会被拒绝 B就不会被拒绝C也一定会被拒绝 D需要重新检验参考答案:C考核知识点:假设检验
16、的显著性水平13、假设检验时若增大样本容量,则犯两类错误的概率( )。A一个增大,一个减少B都增大C都不变D都减少 参考答案:D考核知识点:假设检验的两类错误14、假设检验中,一般情况下,( )错误。 A只犯第一类 B只犯第二类 C既可能犯第一类也可能犯第二类 D既不犯第一类也不犯第二类参考答案:C考核知识点:假设检验的两类错误15、要求次品率低于10%才能出厂,在检验时原假设应该是( )。 A. B. C. D.参考答案:A考核知识点:单边假设检验16、设随机变量XN(2,102),且P0X4=0.5,则PX鐽鐽耀l茀鋳搀傞屝倀昀搀瀀倀焀伀漀焀瘀倀堀堀椀樀洀圀焀儀戀嘀吀栀匀堀瘀儀氀圀儀最倀戀
17、瀀琀蕞饑炀晥顷呓h顢顙熘顜顜燿顜葑禐g祎顔腶葬鞋面鱾愀拿萀灓慒戀萀騀簀N戀澇胔-J谠覕i縃$萇2020年河北省沧州市中考生物真题及答案.doc9b8de16cf1a64403be5bcb28530684a3.gif2020年河北省沧州市中考生物真题及答案.doc2021-101764759e2c-2bdc-42a0-9058-fca40b11f77eJGVNuvcW3Q0QvD1+AXDEZUEQ5/iqS5WdDSXHEAPtwJV2acK2rD3kPQ=2020,河北省,沧州市,中考,生物,答案https:/ 单项选择题本卷包括15道小题,每小题1分,共15分。在每小题提供的四个选项中,只有一项是最符合题目要求的。1.为研究饮水机中细菌的生存条件,有人将同一桶纯净水每隔3天,分别从冷水口和热水口接等量?0E,輂丧(鼱匀萀%蒔%幉讀缁囩翾缀堘槾秀脃焄焄焄焄焄焄焄焄焄焄焄