收藏 分享(赏)

《相似三角形的判定—AA判定定理》示范课教学PPT课件(定稿)人教版九下.pptx

上传人:大宝 文档编号:5736978 上传时间:2022-06-21 格式:PPTX 页数:18 大小:682.99KB
下载 相关 举报
《相似三角形的判定—AA判定定理》示范课教学PPT课件(定稿)人教版九下.pptx_第1页
第1页 / 共18页
《相似三角形的判定—AA判定定理》示范课教学PPT课件(定稿)人教版九下.pptx_第2页
第2页 / 共18页
《相似三角形的判定—AA判定定理》示范课教学PPT课件(定稿)人教版九下.pptx_第3页
第3页 / 共18页
《相似三角形的判定—AA判定定理》示范课教学PPT课件(定稿)人教版九下.pptx_第4页
第4页 / 共18页
《相似三角形的判定—AA判定定理》示范课教学PPT课件(定稿)人教版九下.pptx_第5页
第5页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、相似三角形的判定AA判定定理人教版九年级数学下册人教版九年级数学下册复习回顾平行线法:平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似.SSS法:三边对应成比例,两三角形相似SAS法:两边对应成比例且夹角相等,两三角形相似定义法:对应角相等,对应边成比例的三角形相似转化为定义法进行证明前面我们学习了下面的4个相似三角形的判定定理,它们的内在联系是怎样的呢?未知转化为已知未知转化为已知还有判定三角形相似的其他方法吗?类比全等三角形的AAS和ASA定理,你还能得到哪些判定三角形相似的方法呢?探究全等三角形相似三角形图形判定方法CABAAS(角角边)条件:两组对应角相等, 且对应角的夹边

2、也相等ABCCABABC两角分别相等,两三角形相似ASA(角边角)条件:两组对应角相等,且其中一 个对应角的对边也相等两角分别相等,两三角形相似猜想猜想:如果一个三角形的两个角与另一个三角形的两个角分别相等,那么这两个三角形相似ABCABCABC思考:已知在ABC和ABC中,请问,ABCABCB=BA=A成立吗?证明已知:如图,在ABC与ABC中,A=A,B=B,求证:ABCABC.分析:已知条件中,只含有角度的条件,结合已经学过的判定方法进行分析(2)利用平行线法构造证明(添加辅助线)(1)利用定义法证明(条件不够)ABCABC证明ABCABCABCABCA=AADEABCADE=B,AED

3、=C,DE= BC.又B=BADE=BDE/ BCADEABCA=A,B=B,C=C证明:在线段AB、AC (或它的延长线)上截取AD=AB,AE=AC ,连接DE.DE归纳符号语言:如图,在ABC和ABC中,A=A,B=BABCABC如果一个三角形的两个角与另一个三角形的两个角分别相等,那么这两个三角形相似定理:简记为:两角分别相等,两三角形相似典型例题在相似三角形中,一般来说,对顶角、公共角是隐藏的对应角. BDACEF解:B=C, DFB=EFCDFBEFC(两角分别相等的两个三角形相似)B=C, A=AABEACD(两角分别相等的两个三角形相似)例1. 如图:C=B,请指出图中的相似三

4、角形.典型例题 例2如图,在RtABC中,CD是斜边上的高,ACD和CBD都和ABC相似吗?证明你的结论证明:ACB=ADC=90A=A,ACDABCCDB=ACB=90,B=B,CBDABCABCCBDACD(1)图中有三个直角,分别相等(2)有两个公共角A、B分析:典型例题相似三角形的相似比,经常用来计算三角形的边长,是将形转化为数的有力工具 例3 如图,RtABC中,C=90,AB=10,AC=8E是AC上一点,AE=5,EDAB,垂足为D求AD的长解:EDAB,EDA=90又C=90,A=A,AEDABC典型例题 例4如图,在RtABC和RtABC中,C=C=90,求证:RtABCRt

5、ABC分析:要证RtABCRtABC,可设法证明,只需证若设典型例题 证明:设,则AB=kAB,AC=kACRtABCRtABC由勾股定理得 : , 典型例题直角三角形相似的判定方法有:(1)HL定理(直角边和斜边定理):任意直角边与斜边对应成比例即可(2)AA定理:任意两组对应角相等,通常说明一对锐角对应相等即可 定理:两个直角三角形的斜边和一条直角边对应成比例,则这两个直角三角形相似.简称HL随堂练习AECBD练习1.如图:AB=2AC,BD=2AE,且BDAD,AEEC,求证:ABDCAERtABDRtCAE证明:BDAD,AEEC,ABD和CAE都是直角三角形追问:还可以利用SSS进行证明吗?你来试试吧?课堂小结课堂小结HL定理:AA判定定理定理的证明方法:(1)构造全等 (2)利用平行线法证明相似AA定理两角分别相等,两三角形相似符号语言:在ABC和ABC中,A=A,B=BABCABC定理:两个直角三角形的斜边和一条直角边对应成比例,则这两个直角三角形相似.简称HL布置作业布置作业教科书习题敬请各位老师提出宝贵意见!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 中学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报