1、共线向量与共面向量 A B C D D CB A 练习 在立方体AC1中,点E是面AC的中心,求下 列各式中的x,y. E A B C D D CB A 练习 E 在立方体AC1中,点E是面AC 的中心,求下列 各式中的x,y. A B C D D CB A 练习2 E 在立方体AC1中,点E是面AC 的中心,求下 列各式中的x,y. 推论:如果 为经过已知点A且平行 已知非零向量 的直线,那么对任一点O, 点P在直线 上的充要条件是存在实数t, 满足等式OP=OA+t 其中向量a叫做直线的 方向向量. O A B P a 若P为A,B中点, 则 例1 已知A、B、P三点共线,O为空间任 意一
2、点,且 ,求 的 值. 1.下列说明正确的是: A.在平面内共线的向量在空间不一定共 线 B.在空间共线的向量在平面内不一定共 线 C.在平面内共线的向量在空间一定不共 线 D.在空间共线的向量在平面内一定共线 2.下列说法正确的是: A.平面内的任意两个向量都共线 B.空间的任意三个向量都不共面 C.空间的任意两个向量都共面 D.空间的任意三个向量都共面 3.对于空间任意一点O,下列命题正确的 是: A.若 ,则P、A、B共线 B.若 ,则P是AB的中点 C.若 ,则P、A、B不共线 D.若 ,则P、A、B共线 4.若对任意一点O,且 , 则x+y=1是P、A、B三点共线的: A.充分不必要
3、条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.设点P在直线AB上并且 ,O为空间任意一点,求证: 2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要 条件是存在实数对 使 推论:空间一点P位于平面MAB内的充 要条件是存在有序实数对x,y使 或对空间任一点O,有 例3 对空间任意一点O和不共线的三点 A、B、C,试问满足向量关系式 (其中 )的四点P、A、B、 C是否共面? 注意: 空间四点P、M、A、B共面 实数对 例4 已知A、B、M三点不共线,对于平面 ABM外的任一点O,确定在下列各条件下, 点P是否与A、B、M一定共面? 1.下列命题中正确的有: A.1个 B.2个 C.3个 D.4个 三、课堂小结: 1.共线向量的概念。 2.共线向量定理。 3.共面向量的概念。 4.共面向量定理。