收藏 分享(赏)

1.5 平行关系 学案.doc

上传人:教育咨询 文档编号:2917081 上传时间:2020-09-29 格式:DOC 页数:7 大小:1.16MB
下载 相关 举报
1.5 平行关系 学案.doc_第1页
第1页 / 共7页
1.5 平行关系 学案.doc_第2页
第2页 / 共7页
1.5 平行关系 学案.doc_第3页
第3页 / 共7页
1.5 平行关系 学案.doc_第4页
第4页 / 共7页
1.5 平行关系 学案.doc_第5页
第5页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、1.5 平行关系 学案【教学目标】掌握空间元素的平行关系的判定与性质的有关知识,并能运用这些知识解决与平行有关的问题。【教学重点】空间线线、线面、面面平行关系的转化。【教学难点】线面平行的各种判定方法。【教学过程】一.课前预习1(05北京)在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是( )。 ABC/平面PDF BDF平面PA E C平面PDF平面ABC D平面PAE平面 ABC2(05湖北) 如图,在三棱柱中,点E、F、H、K分别为、 的中点,G为ABC的重心从K、H、G、中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为( )。AK BH

2、 CG D3(05广东)给出下列关于互不相同的直线m、l、n和平面、的四个命题:若;若m、l是异面直线,;若;若其中为假命题的是( )。A B C D4(05辽宁)已知m、n是两条不重合的直线,、是三个两两不重合的平面,给出下列四个命题:若; 若;若;若m、n是异面直线,其中真命题是( )。A和B和C和D和5.如图所示,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC中点,点M在四边形EFGH及其内部运动,则M只须满足 时,就有MN/平面B1BDD1(请填出你认为正确的一个条件即可,不必考虑所有可能情况)。二、梳理知识立体几何中的核心

3、内容是空间中直线与直线,直线与平面,平面与平面的位置关系,实质上是不同层次的平行,垂直关系的相互转化,任何一个问题的解决,都是从已知的某些位置关系转化为所要求证的位置关系,解决问题的过程就是寻求或创造条件完成这些转化。其中直线与平面的平行是联系直线与直线平行,平面与平面平行的纽带,同时也是立体几何中某些角,距离转化的依据;1.线与线、线与面、面与面的位置关系,及其判定定理2.重要判定定理(1) 平面外的直线与平面内的一条直线平行,则这条直线与这个平面平行(线面平行判定定理)(2) 平面内两条直交直线与另一个平面平行,则这两个平面互相平行(面面平行判定定理)3.证明直线与平面平行的方法有:依定义

4、采用反证法;判定定理;面面平行的性质定理。三、典型例题例1如图,四棱锥PABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD底面ABCD,E 为侧棱PD的中点。(1)求证:PB/平面EAC;(2)求证:AE平面PCD;(3)若AD=AB,试求二面角APCD的正切值;(4)当为何值时,PBAC ?例2(05天津)如图,在斜三棱柱中,侧面与底面ABC所成的二面角为,E、F分别是棱的中点()求与底面ABC所成的角()证明平面()求经过四点的球的体积例3. 如图1,已知正方体ABCDA1B1C1D1中,E、F、G、H、L、M、N分别为A1D1,A1B1,BC,CD,DA,DE,CL的中点。(1)求

5、证:EFGF;(2)求证:MN平面EFGH;(3)若AB=2,求MN到平面EFGH的距离。参考答案:一.课前预习: 1C 2 C 3 C 4 D,5 点M只须满足在直线EH上时,三、典型例题例1(1)证明:连DB,设,则在矩形ABCD中,O为BD中点。连EO。因为E为DP中点,所以,。又因为平面EAC,平面EAC,所以,PB/平面EAC。(2)正三角形PAD中,E为PD的中点,所以,又,所以,AE平面PCD。(3)在PC上取点M使得。由于正三角形PAD及矩形ABCD,且AD=AB,所以所以,在等腰直角三角形DPC中,连接,因为AE平面PCD,所以,。所以,为二面角APCD的平面角。在中,。即二

6、面角APCD的正切值为。(4)设N为AD中点,连接PN,则。又面PAD底面ABCD,所以,PN底面ABCD。所以,NB为PB在面ABCD上的射影。要使PBAC,需且只需NBAC在矩形ABCD中,设AD1,ABx则,解之得:。所以,当时,PBAC。证法二:(按解法一相应步骤给分)设N为AD中点,Q为BC中点,则因为PAD是正三角形,底面ABCD是矩形,所以,又因为侧面PAD底面ABCD,所以,以N为坐标原点,NA、NQ、NP所在直线分别为轴如图建立空间直角坐标系。设,则,。(2),所以,。又,所以,AE平面PCD。(3)当时,由(2)可知:是平面PDC的法向量;设平面PAC的法向量为,则,即,取

7、,可得:。所以,。向量与所成角的余弦值为:。所以,。又由图可知,二面角APCD的平面角为锐角,所以,二面角APCD的平面角就是向量与所成角的补角。其正切值等于。(4),令,得,所以,。所以,当时,PBAC。例2(05天津)解:()过作平面,垂足为连结,并延长交于,于是为与底面所成的角,为的平分线又,且为的中点因此,由三垂线定理,且,于是为二面角的平面角,即由于四边形为平行四边形,得()证明:设与的交点为,则点为的中点连结在平行四边形中,因为的中点,故而平面,平面,所以平面()连结在和中,由于,则,故由已知得又平面,为的外心设所求球的球心为,则,且球心与中点的连线在中,故所求球的半径,球的体积。例3.解 (1)如图2,作GQB1C1于Q,连接FQ,则GQ平面A1B1C1D1,且Q为B1C1的中点。在正方形A1B1C1D1中,由E、F、Q分别为A1D1、A1B1、B1C1的中点可证明EFFQ,由三垂线定理得EFGF。(2)连DG和EG。N为CL的中点,由正方形的对称性,N也为DG的中点。在DEG中,由三角形中位线性质得MNEG,又EG平面EFGH,MN平面EFGH,MN平面EFGH。(3)图3为图2的顶视图。连NH和NE。设N到平面EFGH的距离为h,VENGH=VNHEGAA1SNHG=hSHEG2=hEHHG又EH=,HG= =h,h=

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教育专区 > 中学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报