收藏 分享(赏)

企业网络安全解决方案.doc

上传人:碧海蓝天 文档编号:2923304 上传时间:2020-09-29 格式:DOC 页数:13 大小:246.50KB
下载 相关 举报
企业网络安全解决方案.doc_第1页
第1页 / 共13页
企业网络安全解决方案.doc_第2页
第2页 / 共13页
企业网络安全解决方案.doc_第3页
第3页 / 共13页
企业网络安全解决方案.doc_第4页
第4页 / 共13页
企业网络安全解决方案.doc_第5页
第5页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、南华大学船山学院毕业设计目录前言3第一章 充电器原理41.1、蓄电池与充电技术41.2、密封铅酸蓄电池的充电特性41.3、充电器充电原理51.3.1、 蓄电池充电理论基础51.3.2、 充电方法的研究71.3.2.1、 常规充电法71.3.2.2、 四阶段充电法91.3.3、 充电方法设计101.3.3.1、 预充电111.3.3.2、 脉冲快速充电111.3.3.3、 补足充电111.3.3.4、 浮充电12第二章 总体设计方案1221、 系统设计1222、方案比较与方案选择12第三章 硬件电路设计163.1、电路总体设计163.2、芯片介绍173.2.1、 AT889S52型单片机173.

2、2.1.1、功能特性描述173.2.1.2、引脚结构183.2.2、ADC0809模数转换芯片233.2.3、LM324是四运放集成芯片273.3、功能模块电路设计293.3.1、交流220V整流滤波电路293.3.2、充电主电路模块313.3.3、单片机最小系统电路模块333.3.4、信号采样与放大模块电路图343.3.5、模数转换模块电路393.3.6、电源模块电路413.3.7、单片机AT89S52下载电路43第四章 软件设计434.1、系统设计434.2、ADC0809模数转换启动与信号读取软件设计454.3、采样电流数据转换为实际电流值软件设计474.4、数据处理软件设计484.5、

3、电源通断控制软件设计50参考文献51谢辞52附录53前言以动力蓄电池为能源的电动车被认为是21世纪的绿色工程,它的出现将汽车工业的发展带入了一个全新的领域。目前,电动车核心部件中的电动机、控制器和车体三大部件在理论和技术上已较为成熟,而另两大部件蓄电池、充电器的发展还不能满足电动车的要求,有一些理论和技术问题还有待攻关,现已成为影响电动交通工具发展的瓶颈。目前,我国的电动车用动力蓄电池大多为铅酸蓄电池,这主要是由于铅酸蓄电池具有技术成熟、成本低、电池容量大、跟随负荷输出特性好、无记忆效应等优点。当然,也有一些高性能电池,比如锂电池、燃料电池等。锂离子电池电动车在深圳已投入试运营,由上海研制的第

4、二代燃料电池轿车“超越二号”也于2004年5月在北京的国际氢能大会上露面,但都还未能得到广泛的推广应用。铅酸蓄电池具有价格低廉、供电可靠、电压稳定等优点,因此广泛应用于国防、通信、铁路、交通、工农业生产部门。近年来全密封免维护铅酸蓄电池其密封好、无泄漏、无污染等优点,能够保证人体和各种用电设备的安全,而且在整个寿命期间,无需任何维护,从而揭开了铅酸蓄电池发展历程新的一页。众所周知,通信设备一般都采用免维护电池作为备用电源,许多电子设备必须的不间断电源系统(UPS)也离不开免维护电池,此外在应急灯、汽车、游艇中也越来越多的选用免维护电池。然而,由于充电方法不正确,充电技术不能适应免维护电池的特殊

5、需求,造成电池很难达到规定的循环寿命。虽然近年来蓄电池自身的技术有了不小的进步,但作为其能量再次补充的充电器的发展非常缓慢,传统的常规充电时间过长,快速充电技术至今仍未能完全解决,严重地制约着电动车的发展。基于此,本文提出了一种用于全密封免维护铅酸蓄电池的智能充电器设计方案,采用先进的四段式慢脉冲充电控制方法,有效地提高充电效率,延长电池寿命。第一章 充电器原理1.1、蓄电池与充电技术对于铅酸、镉镍、镍氢3类以水为溶剂的电解液蓄电池,为了使用上的安全、方便、长寿命和免维护,在全世界化学电源工作者数代人不懈的努力下,终于从大量的实验中发现了内部氧循环的理论机制,使得该3类蓄电池所有的充放电反应,

6、能在一个设计完好的带阀控的密封容器中反复安全进行。即蓄电池在充电和过充电期间,正电极析出的氧到达负电极后,能全部被负电极吸收还原,关系为i(O2析出)=i(O2还原),因而,蓄电池在长期的充放电过程中,不会造成电解液中水的损耗,以此来保证蓄电池的循环使用寿命与充电的安全。1.2、密封铅酸蓄电池的充电特性 电池充电通常要完成两个任务,首先是尽可能快地使电池恢复额定容量,另一是使用小电流充电,补充电池因自放电而损失的能量,以维持电池的额定容量。在充电过程中,铅酸电池负极板上的硫酸铅逐渐析出铅,正极板上的硫酸铅逐渐生成二氧化铅。当正负极板上的硫酸铅完全生成铅和二氧化铅后,电池开始发生过充电反应,产生

7、氢气和氧气。这样,在非密封电池中,电解液中的水将逐渐减少。在密封铅酸蓄电池中,采用中等充电速率时,氢气和氧气能够重新化合为水。过充电开始的时间与充电的速率有关。当充电速率大于时,电池容量恢复到额定容量的以前,即开始发生过充电反应。只有充电速率小于,才能使电池在容量恢复到后,出现过充电反应。为了使电池容量恢复到,必须允许一定的过充电反应。过充电反应发生后,单格电池的电压迅速上升,达到一定数值后,上升速率减小,然后电池电压开始缓慢下降。由此可知,电池充足电后,维持电容容量的最佳方法就是在电池组两端加入恒定的电压。浮充电压下,充入的电流应能补充电池因自放电而失去的能量。浮充电压不能过高,以免因严重的

8、过充电而缩短电池寿命。采用适当的浮充电压,密封铅酸蓄电池的寿命可达年以上。实践证明,实际的浮充电压与规定的浮充电压相差时,免维护蓄电池的寿命将缩短一半。铅酸电池的电压具有负温度系数,其单格值为。在环境温度为时工作很理想的普通(无温度补偿)充电器,当环境温度降到时,电池就不能充足电,当环境温度上升到时,电池将因严重的过充电而缩短寿命。因此,为了保证在很宽的温度范围内,都能使电池刚好充足电,充电器的各种转换电压必须随电池电压的温度系数而变。1.3、充电器充电原理1.3.1、 蓄电池充电理论基础 理论和实践证明,蓄电池的充放电是一个复杂的电化学过程。一般地说,充电电流在充电过程中随时间呈指数规律下降

9、,不可能自动按恒流或恒压充电。充电过程中影响充电的因素很多,诸如电解液的浓度、极板活性物的浓度、环境温度等的不同,都会使充电产生很大的差异。随着放电状态、使用和保存期的不同,即使是相同型号、相同容量的同类蓄电池的充电也大不一样。 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向。图1.1 最佳充电曲线由图1.1可以看出:初始充电电流很大,但是

10、衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。蓄电池是可逆的。其放电及充电的化学反应式如下:PbO2Pb2H2SO42PbSO42H2O (1)很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因

11、为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。一般来说,产生极化现象有3个方面的原因。1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物

12、的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢MeeMe,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me转入溶液,加速MeeMe反应进行。总有一个时刻,达到新的动态平衡

13、。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。这3种极化现象都是随着充电电流的增大而严重。1.3.2、 充电方法的研究1.3.2.1、 常规充电法常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安培时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。一般来说,常规充电有以下3种。1) 恒流充电法恒流充

14、电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法,如图1.2所示。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。图1.2 恒流充电曲线2)阶段充电法此方法包括二阶段充电法和三阶段充电法。a)二阶段法采用恒电流和恒电压相结合的快速充电方法,如图1.3所示。首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。图1.3 二阶段法曲线b)三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电

15、。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。3) 恒压充电法充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,如图1.4所示。由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易的控制系统。图1.4 恒压充电法曲线这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,恒压充电很少使用,

16、只有在充电电源电压低而电流大时采用。例如,汽车运行过程中,蓄电池就是以恒压充电法充电的。1.3.2.2、 四阶段充电法1)四阶段充电的原理1972年,美国科学家马斯在第二届世界电动汽车年会上提出了著名的马斯三定律,即a)对于任何给定的放电电流,蓄电池充电时的电流接受比”a”与电池放出的容量的平方根成反比,即 式中:K1为放电电流常数,视放电电流的大小而定;C为蓄电池放出的容量。由于蓄电池的初始接受电流0=aC,所以 0=aC=K1C1/2(2) b)对于任何给定的放电量,蓄电池充电电流接受比”a”与放电电流d的对数成正比,即 a=K2logkd(3)式中:K2为放电量常数,视放电量的多少而定;

17、 k为计算常数。c)蓄电池在以不同的放电率放电后,其最终的允许充电电流t(接受能力)是各个放电率下的允许充电电流的总和,即: t =1234(4)式中:1、2、3、41为各个放电率下的允许充电电流。综合马斯三定律,可以推出,蓄电池的总电流接受比可表示为 =t /Ct(5)式中:Ct=C1C2C3C4为各次放电量的总和,即蓄电池放出的全部电量。马斯三定律说明,在充电过程中,当充电电流接近蓄电池固有的微量析气充电曲线时,适时地对电池进行反向大电流瞬间放电,以消除电池的极化现象,可以提高蓄电池的充电接受能力,如图1.5所示。也就是说通过反向大电流放电,可以使蓄电池的可接受电流曲线不断右移,同时其陡度

18、不断增大,即值增大,从而大大提高充电速度,缩短充电时间。图1.5 快速充电原理图充电电流大电流放电固有充电曲线大电流放电显著地提高了蓄电池的充电接受力i0t1.3.3、 充电方法设计基于上述理论,并考虑到铅酸蓄电池自身的一些特性,本文介绍的快速充电装置所采用的充电方法将整个充电过程分为了预充电、脉冲快速充电、补足充电、浮充电4个阶段,如图1.6所示。根据蓄电池充电前的残余电量,进入不同的充电阶段。 图1.6 铅酸蓄电池充电过程中的电压、电流原理示意图1.3.3.1、 预充电对长期不用的电池、新电池或在充电初期已处于深度放电状态的蓄电池充电时,一开始就采用快速充电会影响电池的寿命。为了避免这一问题要先对蓄电池实行稳定小电流充电,使电池电压上升,当电池电压上升到能接受大电流充电的阈值时再进行大电流快速充电。1.3.3.2、 脉冲快速充电 在快速充电过程中,采用分级定电流脉冲快速充电法,将充电电流分成三级,如图1.7所示。开始充电时采用大电流,随着电池容量的增加,电压逐渐升高,电流等级开始降低,使充电电流的脉冲幅度和宽度随蓄电池端电压的升高而分级减小。采用这种方法可以消除充电接近充满时易出现的振荡现象及过充电问题。图1.7 分级定电流脉冲快速充电法原理示意图在脉冲快速充电过程中,电池电压上升较快,当电压

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 技术资料 > 技术方案

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报