收藏 分享(赏)

《专业技术骨干人才管理办法》五司人.doc

上传人:顺腾 文档编号:3218523 上传时间:2020-12-10 格式:DOC 页数:16 大小:544.50KB
下载 相关 举报
《专业技术骨干人才管理办法》五司人.doc_第1页
第1页 / 共16页
《专业技术骨干人才管理办法》五司人.doc_第2页
第2页 / 共16页
《专业技术骨干人才管理办法》五司人.doc_第3页
第3页 / 共16页
《专业技术骨干人才管理办法》五司人.doc_第4页
第4页 / 共16页
《专业技术骨干人才管理办法》五司人.doc_第5页
第5页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、.抽象函数的对称性、奇偶性与周期性常用结论 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期。分段函数的周期:设是周

2、期函数,在任意一个周期内的图像为C:。把个单位即按向量在其他周期的图像:。2、奇偶函数:设若若。分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:点 (2)轴对称:对称轴方程为:。关于直线函数关于直线成轴对称。关于直线成轴对称。二、函数对称性的几个重要结论(一)函数图象本身的对称性(自身对称)若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。1、 图象关于直线对称推论1: 的图象关于直线对称推论2、 的图象关于直线对称推论3、 的图象关于直线对称2、 的图象关于点对称推论1、 的图象关于点对称推论2、 的图象关于点对称推论3、 的图象关于点对称(二)两个函数的图象

3、对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数与图象关于Y轴对称2、奇函数与图象关于原点对称函数3、函数与图象关于X轴对称4、互为反函数与函数图象关于直线对称5.函数与图象关于直线对称 推论1:函数与图象关于直线对称推论2:函数与 图象关于直线对称推论3:函数与图象关于直线对称 (三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数yf(x)关于直线xa轴对称,则以下三个式子成立且等价:(1)f(ax)f(ax) (2)f(2ax)f(x) (3)f(2ax)f(x)性质2 若函数yf(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1) f(ax)f

4、(ax)(2) f(2ax)f(x) (3)f(2ax)f(x)易知,yf(x)为偶(或奇)函数分别为性质1(或2)当a0时的特例。2、复合函数的奇偶性定义1、 若对于定义域内的任一变量x,均有fg(x)fg(x), 则复数函数yfg(x)为偶函数。定义2、 若对于定义域内的任一变量x,均有fg(x)fg(x), 则复合函数yfg(x)为奇函数。说明:(1)复数函数fg(x)为偶函数,则fg(x)fg(x)而不是fg(x)fg(x),复合函数yfg(x)为奇函数,则fg(x)fg(x)而不是fg(x)fg(x)。(2)两个特例:yf(xa)为偶函数,则f(xa)f(xa); yf(xa)为奇函

5、数,则f(xa)f(ax)(3)yf(xa)为偶(或奇)函数,等价于单层函数yf(x)关于直线xa轴对称(或关于点(a,0)中心对称)3、复合函数的对称性性质3复合函数yf(ax)与yf(bx)关于直线x(ba)/2轴对称性质4、复合函数yf(ax)与yf(bx)关于点(ba)/2,0)中心对称推论1、 复合函数yf(ax)与yf(ax)关于y轴轴对称推论2、 复合函数yf(ax)与yf(ax)关于原点中心对称4、函数的周期性若a是非零常数,若对于函数yf(x)定义域内的任一变量x点有下列条件之一成立,则函数yf(x)是周期函数,且2|a|是它的一个周期。f(xa)f(xa) f(xa)f(x

6、)f(xa)1/f(x) f(xa)1/f(x)5、函数的对称性与周期性性质5 若函数yf(x)同时关于直线xa与xb轴对称,则函数f(x)必为周期函数,且T2|ab|性质6、若函数yf(x)同时关于点(a,0)与点(b,0)中心对称,则函数f(x)必为周期函数,且T2|ab|性质7、若函数yf(x)既关于点(a,0)中心对称,又关于直线xb轴对称,则函数f(x)必为周期函数,且T4|ab| 6、函数对称性的应用 (1)若,即 (2)例题 1、; 2、奇函数的图像关于原点(0,0)对称:。 3、若的图像关于直线对称。设.(四)常用函数的对称性三、函数周期性的几个重要结论1、( ) 的周期为,(

7、)也是函数的周期2、 的周期为3、 的周期为4、 的周期为5、 的周期为6、 的周期为7、 的周期为8、 的周期为9、 的周期为10、若11、有两条对称轴和 周期推论:偶函数满足 周期12、有两个对称中心和 周期推论:奇函数满足 周期13、有一条对称轴和一个对称中心的四、用函数奇偶性、周期性与对称性解题的常见类型灵活应用函数奇偶性、周期性与对称性,可巧妙的解答某些数学问题,它对训练学生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。1.求函数值例1.(1996年高考题)设是上的奇函数,当时,则等于(-0.5)(A)0.5; (B)-0.5; (C)1.5; (D)-1.5.例2

8、(1989年北京市中学生数学竞赛题)已知是定义在实数集上的函数,且,求的值.。2、比较函数值大小例3.若是以2为周期的偶函数,当时,试比较、的大小.解:是以2为周期的偶函数,又在上是增函数,且,3、求函数解析式例4.(1989年高考题)设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.解:设时,有 是以2 为周期的函数,.例5设是定义在上以2为周期的周期函数,且是偶函数,在区间上,求时,的解析式.解:当,即,又是以2为周期的周期函数,于是当,即时,4、判断函数奇偶性例6.已知的周期为4,且等式对任意均成立,判断函数的奇偶性.解:由的周期为4,得,由得,故为偶函数.5、

9、确定函数图象与轴交点的个数例7.设函数对任意实数满足, 判断函数图象在区间上与轴至少有多少个交点.解:由题设知函数图象关于直线和对称,又由函数的性质得是以10为周期的函数.在一个周期区间上,故图象与轴至少有2个交点.而区间有6个周期,故在闭区间上图象与轴至少有13个交点.6、在数列中的应用例8.在数列中,求数列的通项公式,并计算分析:此题的思路与例2思路类似.解:令则不难用归纳法证明数列的通项为:,且以4为周期.于是有1,5,9 1997是以4为公差的等差数列,由得总项数为500项,7、在二项式中的应用例9.今天是星期三,试求今天后的第天是星期几?分析:转化为二项式的展开式后,利用一周为七天这

10、个循环数来进行计算即可.解:因为展开式中前92项中均有7这个因子,最后一项为1,即为余数,故天为星期四.8、复数中的应用例10.(上海市1994年高考题)设,则满足等式且大于1的正整数中最小的是(A) 3 ; (B)4 ; (C)6 ; (D)7.分析:运用方幂的周期性求值即可.解:,9、解“立几”题例11.ABCD是单位长方体,黑白二蚁都从点A出发,沿棱向前爬行,每走一条棱称为“走完一段”。白蚁爬行的路线是黑蚁爬行的路线是它们都遵循如下规则:所爬行的第段所在直线与第段所在直线必须是异面直线(其中.设黑白二蚁走完第1990段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是(A)1; (B);

11、(C) ; (D)0.解:依条件列出白蚁的路线立即可以发现白蚁走完六段后又回到了A点.可验证知:黑白二蚁走完六段后必回到起点,可以判断每六段是一个周期.1990=6,因此原问题就转化为考虑黑白二蚁走完四段后的位置,不难计算出在走完四段后黑蚁在点,白蚁在C点,故所求距离是例题与应用例1:f(x) 是R上的奇函数f(x)= f(x+4) ,x0,2时f(x)=x,求f(2007) 的值 例2:已知f(x)是定义在R上的函数,且满足f(x+2)1f(x)=1+f(x),f(1)=2,求f(2009) 的值 。故f(2009)= f(2518+1清洁、舒适、安静,空气流通。(2)根据病症性质,调节病室

12、内温湿度。(3)每日定时空气消毒。4、入院介绍(1)介绍主管医师、护士。(2)介绍就诊环境及设施的使用方法。介绍作息时间及相关制度。5、生命体征监测,做好护理记录(1)测量即体温、脉搏、呼吸、血压。(2)新入急诊室患者每日测体温、脉搏、呼吸4次,连续3日。(3)体温37.5以上者,每日测体温、脉搏、呼吸4次。(4)若体温39以上者,每4小时测体温、脉搏、呼吸1次,或遵医嘱执行。(5)留观患者体温正常3日后,每日促体温、脉搏、呼吸1次,或遵医嘱执行。(6)危重患者生命体征监测遵医嘱执行。6、每日记录大小便次数1次。7、协助医师完成各项检查。8、病情观察,做好护理记录,注明执行时间。(1)严密观察患者生命体征、瞳孔、神志、舌脉等变化,发现异常,及时报告医师。(2)根据病情,给予正确体位。对烦躁不安患者加床栏或用约束带妥善约束,防止发生意外。(3)注意观察分泌物、排泄物。对疑似服毒、诊断不明的昏迷患者,按病情及时收集相应标本送检。(4)注意治疗效果及药物不良反应等,发现异常,及时报告医师。(5)随时检查各种管道是否通畅,发现异常,及时处理。(6)对诊断不明的急

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教育专区 > 学前教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:文库网官方知乎号:文库网

经营许可证编号: 粤ICP备2021046453号世界地图

文库网官网©版权所有2025营业执照举报